39 research outputs found

    Analytic Lyapunov exponents in a classical nonlinear field equation

    Full text link
    It is shown that the nonlinear wave equation t2ϕx2ϕμ0x(xϕ)3=0\partial_t^2\phi - \partial^2_x \phi -\mu_0\partial_x(\partial_x\phi)^3 =0, which is the continuum limit of the Fermi-Pasta-Ulam (FPU) beta model, has a positive Lyapunov exponent lambda_1, whose analytic energy dependence is given. The result (a first example for field equations) is achieved by evaluating the lattice-spacing dependence of lambda_1 for the FPU model within the framework of a Riemannian description of Hamiltonian chaos. We also discuss a difficulty of the statistical mechanical treatment of this classical field system, which is absent in the dynamical description.Comment: 4 pages, 1 figur

    Hot Quark Matter with an Axial Chemical Potential

    Full text link
    We analyze the phase diagram of hot quark matter in presence of an axial chemical potential, μ5\mu_5. The latter is introduced to mimic the chirality transitions induced, in hot Quantum Chromodynamics, by the strong sphaleron configurations. In particular, we study the curvature of the critical line at small μ5\mu_5, the effects of a finite quark mass and of a vector interaction. Moreover, we build the mixed phase at the first order phase transition line, and draw the phase diagram in the chiral density and temperature plane. We finally compute the full topological susceptibility in presence of a background of topological charge.Comment: 12 pages, 7 figures. Few references added, short discussion included. Final version appearing on Phys. Rev.

    Dressed Polyakov loop and phase diagram of hot quark matter under magnetic field

    Get PDF
    We evaluate the dressed Polyakov loop for hot quark matter in strong magnetic field. To compute the finite temperature effective potential, we use the Polyakov extended Nambu-Jona Lasinio model with eight-quark interactions taken into account. The bare quark mass is adjusted in order to reproduce the physical value of the vacuum pion mass. Our results show that the dressed Polyakov loop is very sensitive to the strenght of the magnetic field, and it is capable to capture both the deconfinement crossover and the chiral crossover. Besides, we compute self-consistently the phase diagram of the model. We find a tiny split of the two aforementioned crossovers as the strength of the magnetic field is increased. Concretely, for the largest value of magnetic field investigated here, eB=19mπ2eB=19 m_\pi^2, the split is of the order of 10%10\%. A qualitative comparison with other effective models and recent Lattice results is also performed.Comment: 10 pages, 3 figures, RevTeX4-1 styl

    The fate of the leptophobic Z'

    Get PDF
    We review the main features of the leptophobic-Z' phenomenology, commenting on the prospects of these models after the recent experimental results on R_c, R_b and after the recent theoretical analyses of jet production at the Tevatron

    Chiral magnetic effect in the PNJL model

    Get PDF
    We study the two-flavor Nambu--Jona-Lasinio model with the Polyakov loop (PNJL model) in the presence of a strong magnetic field and a chiral chemical potential μ5\mu_5 which mimics the effect of imbalanced chirality due to QCD instanton and/or sphaleron transitions. Firstly we focus on the properties of chiral symmetry breaking and deconfinement crossover under the strong magnetic field. Then we discuss the role of μ5\mu_5 on the phase structure. Finally the chirality charge, electric current, and their susceptibility, which are relevant to the Chiral Magnetic Effect, are computed in the model.Comment: Some reference added. Minor revisions. One figure added. To appear on Phys. Rev.

    Chiral magnetic effect in the PNJL model

    Get PDF
    We study the two-flavor Nambu--Jona-Lasinio model with the Polyakov loop (PNJL model) in the presence of a strong magnetic field and a chiral chemical potential μ5\mu_5 which mimics the effect of imbalanced chirality due to QCD instanton and/or sphaleron transitions. Firstly we focus on the properties of chiral symmetry breaking and deconfinement crossover under the strong magnetic field. Then we discuss the role of μ5\mu_5 on the phase structure. Finally the chirality charge, electric current, and their susceptibility, which are relevant to the Chiral Magnetic Effect, are computed in the model.Comment: Some reference added. Minor revisions. One figure added. To appear on Phys. Rev.

    Beam polarization at LHC and SSC. Expected asymmetries in the Bess model and comparison with other models

    Get PDF
    In view of recent and foreseen technical advances in beam polarization in future proton colliders we discuss possible tests of non-standard physics at LHC and SSC assuming initial proton polarization, specifically to test for a strong electroweak sector and compairing with different extended gauge models. We examine lepton pair production, studying left-right and forward-backward asymmtries, assuming quark-antiquark and WW fusion production mechanisms. We discuss the uncertainties related to polarized proton structure functions
    corecore