9 research outputs found

    Human neutralizing antibodies to cold linear epitopes and subdomain 1 of the SARS-CoV-2 spike glycoprotein

    Get PDF
    Emergence of SARS-CoV-2 variants diminishes the efficacy of vaccines and antiviral monoclonal antibodies. Continued development of immunotherapies and vaccine immunogens resilient to viral evolution is therefore necessary. Using coldspot-guided antibody discovery, a screening approach that focuses on portions of the virus spike glycoprotein that are both functionally relevant and averse to change, we identified human neutralizing antibodies to highly conserved viral epitopes. Antibody fp.006 binds the fusion peptide and cross-reacts against coronaviruses of the four genera, including the nine human coronaviruses, through recognition of a conserved motif that includes the S2´ site of proteolytic cleavage. Antibody hr2.016 targets the stem helix and neutralizes SARS-CoV-2 variants. Antibody sd1.040 binds to subdomain 1, synergizes with antibody rbd.042 for neutralization and, like fp.006 and hr2.016, protects mice expressing human ACE2 against infection when present as bispecific antibody. Thus, coldspot-guided antibody discovery reveals donor-derived neutralizing antibodies that are cross-reactive with Orthocoronavirinae, including SARS-CoV-2 variants

    Targeting a large active site : structure-based design of nanomolar inhibitors of Trypanosoma brucei trypanothione reductase

    No full text
    Trypanothione reductase (TR) plays a key role in the unique redox metabolism of trypanosomatids, the causative agents of human African trypanosomiasis (HAT), Chagas' disease, and leishmaniases. Introduction of a new, lean propargylic vector to a known class of TR inhibitors resulted in the strongest reported competitive inhibitor of Trypanosoma (T.) brucei TR, with an inhibition constant K; i; of 73 nm, which is fully selective against human glutathione reductase (hGR). The best ligands exhibited in vitro IC; 50; values (half-maximal inhibitory concentration) against the HAT pathogen, T. brucei rhodesiense, in the mid-nanomolar range, reaching down to 50 nm. X-Ray co-crystal structures confirmed the binding mode of the ligands and revealed the presence of a HEPES buffer molecule in the large active site. Extension of the propargylic vector, guided by structure-based design, to replace the HEPES buffer molecule should give inhibitors with low nanomolar K; i; and IC; 50; values for in vivo studies

    Biological evaluation and x-ray co-crystal structures of cyclohexylpyrrolidine ligands for trypanothione reductase, an enzyme from the redox metabolism of trypanosoma

    No full text
    The tropical diseases human African trypanosomiasis, Chagas disease, and the various forms of leishmaniasis are caused by parasites of the family of trypanosomatids. These protozoa possess a unique redox metabolism based on trypanothione and trypanothione reductase (TR), making TR a promising drug target. We report the optimization of properties and potency of cyclohexylpyrrolidine inhibitors of TR by structure-based design. The best inhibitors were freely soluble and showed competitive inhibition constants (K; i; ) against Trypanosoma (T.) brucei TR and T. cruzi TR and in vitro activities (half-maximal inhibitory concentration, IC; 50; ) against these parasites in the low micromolar range, with high selectivity against human glutathione reductase. X-ray co-crystal structures confirmed the binding of the ligands to the hydrophobic wall of the "mepacrine binding site" with the new, solubility-providing vectors oriented toward the surface of the large active site

    Adapting Neutralizing Antibodies to Viral Variants by Structure-Guided Affinity Maturation Using Phage Display Technology

    No full text
    Neutralizing monoclonal antibodies have achieved great efficacy and safety for the treatment of numerous infectious diseases. However, their neutralization potency is often rapidly lost when the target antigen mutates. Instead of isolating new antibodies each time a pathogen variant arises, it can be attractive to adapt existing antibodies, making them active against the new variant. Potential benefits of this approach include reduced development time, cost, and regulatory burden. Here a methodology is described to rapidly evolve neutralizing antibodies of proven activity, improving their function against new pathogen variants without losing efficacy against previous ones. The reported procedure is based on structure-guided affinity maturation using combinatorial mutagenesis and phage display technology. Its use against the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is demonstrated, but it is suitable for any other pathogen. As proof of concept, the method is applied to CoV-X2, a human bispecific antibody that binds with high affinity to the early SARS-CoV-2 variants but lost neutralization potency against Delta. Antibodies emerging from the affinity maturation selection exhibit significantly improved neutralization potency against Delta and no loss of efficacy against the other viral sequences tested. These results illustrate the potential application of structure-guided affinity maturation in facilitating the rapid adaptation of neutralizing antibodies to pathogen variants

    Machine learning analyses of antibody somatic mutations predict immunoglobulin light chain toxicity

    Get PDF
    Systemic light chain amyloidosis (AL) is caused by the production of toxic light chains and can be fatal, yet effective treatments are often not possible due to delayed diagnosis. Here the authors show that a machine learning platform analyzing light chain somatic mutations allows the prediction of light chain toxicity to serve as a possible tool for early diagnosis of AL

    The hit-and-return system enables efficient time-resolved serial synchrotron crystallography

    No full text
    We present a ‘hit-and-return’ (HARE) method for time-resolved serial synchrotron crystallography with time resolution from milliseconds to seconds or longer. Timing delays are set mechanically, using the regular pattern in fixed-target crystallography chips and a translation stage system. Optical pump-probe experiments to capture intermediate structures of fluoroacetate dehalogenase binding to its ligand demonstrated that data can be collected at short (30 ms), medium (752 ms) and long (2,052 ms) intervals
    corecore