16,536 research outputs found

    Risk, cohabitation and marriage

    Get PDF
    This paper introduces imperfect information,learning,and risk aversion in a two sided matching model.The modelprovides a theoreticalframework for the com- monly occurring phenomenon of cohabitation followed by marriage,and is con- sistent with empirical findings on these institutions.The paper has three major results.First,individuals set higher standards for marriage than for cohabitation. When the true worth of a cohabiting partner is revealed,some cohabiting unions are converted into marriage while others are not.Second,individuals cohabit within classes.Third,the premium that compensates individuals for the higher risk involved in marriage over a cohabiting partnership is derived.This premium can be decomposed into two parts.The first part is a function of the individual ’s level of risk aversion,while the second part is a function of the di difference in risk between marriage and cohabitation.

    Effect of inter-edge Coulomb interactions on transport through a point contact in a \nu = 5/2 quantum Hall state

    Full text link
    We study transport across a point contact separating two line junctions in a \nu = 5/2 quantum Hall system. We analyze the effect of inter-edge Coulomb interactions between the chiral bosonic edge modes of the half-filled Landau level (assuming a Pfaffian wave function for the half-filled state) and of the two fully filled Landau levels. In the presence of inter-edge Coulomb interactions between all the six edges participating in the line junction, the stable fixed point corresponds to a point contact which is neither fully opaque nor fully transparent. Remarkably, this fixed point represents a situation where the half-filled level is fully transmitting, while the two filled levels are completely backscattered; hence the fixed point Hall conductance is given by G_H = {1/2} e^2/h. We predict the non-universal temperature power laws by which the system approaches the stable fixed point from the two unstable fixed points corresponding to the fully connected case (G_H = {5/2} e^2/h) and the fully disconnected case (G_H = 0).Comment: 6 pages, 3 figures; made several changes -- this is the published versio

    Risk, cohabitation and marriage

    Get PDF

    Unsupervised decoding of long-term, naturalistic human neural recordings with automated video and audio annotations

    Get PDF
    Fully automated decoding of human activities and intentions from direct neural recordings is a tantalizing challenge in brain-computer interfacing. Most ongoing efforts have focused on training decoders on specific, stereotyped tasks in laboratory settings. Implementing brain-computer interfaces (BCIs) in natural settings requires adaptive strategies and scalable algorithms that require minimal supervision. Here we propose an unsupervised approach to decoding neural states from human brain recordings acquired in a naturalistic context. We demonstrate our approach on continuous long-term electrocorticographic (ECoG) data recorded over many days from the brain surface of subjects in a hospital room, with simultaneous audio and video recordings. We first discovered clusters in high-dimensional ECoG recordings and then annotated coherent clusters using speech and movement labels extracted automatically from audio and video recordings. To our knowledge, this represents the first time techniques from computer vision and speech processing have been used for natural ECoG decoding. Our results show that our unsupervised approach can discover distinct behaviors from ECoG data, including moving, speaking and resting. We verify the accuracy of our approach by comparing to manual annotations. Projecting the discovered cluster centers back onto the brain, this technique opens the door to automated functional brain mapping in natural settings

    Learning Multi-level Deep Representations for Image Emotion Classification

    Full text link
    © 2019, Springer Science+Business Media, LLC, part of Springer Nature. In this paper, we propose a new deep network that learns multi-level deep representations for image emotion classification (MldrNet). Image emotion can be recognized through image semantics, image aesthetics and low-level visual features from both global and local views. Existing image emotion classification works using hand-crafted features or deep features mainly focus on either low-level visual features or semantic-level image representations without taking all factors into consideration. The proposed MldrNet combines deep representations of different levels, i.e. image semantics, image aesthetics and low-level visual features to effectively classify the emotion types of different kinds of images, such as abstract paintings and web images. Extensive experiments on both Internet images and abstract paintings demonstrate the proposed method outperforms the state-of-the-art methods using deep features or hand-crafted features. The proposed approach also outperforms the state-of-the-art methods with at least 6% performance improvement in terms of overall classification accuracy

    Numerical modelling of vented lean hydrogen deflagations in an ISO container

    Get PDF
    Hydrogen process equipment are often housed in 20-foot or 40-foot container either be at refueling stations or at the portable standalone power generation units. Shipping Container provide an easy to install, cost effective, all weather protective containment. Hydrogen has unique physical properties, it can quickly form an ignitable cloud for any accidental release or leakages in air, due to its wide flammability limits. Identifying the hazards associated with these kind of container applications are very crucial for design and safe operation of the container hydrogen installations. Recently both numerical studies and experiment have been performed to ascertain the level of hazards and its possible mitigation methods for hydrogen applications. This paper presents the numerical modelling and the simulations performed using the HyFOAM CFD solver for vented deflagrations processes. HyFOAM solver is developed in-house using the opensource CFD toolkit OpenFOAM libraries. The turbulent flame deflagrations are modelled using the flame wrinkling combustion model. This combustion model is further improved to account for flame instabilities dominant role in vented lean hydrogen-air mixtures deflagrations. The 20-foot ISO containers of dimensions 20′ × 8′ × 8′.6″ filled with homogeneous mixture of hydrogen-air at different concentration, with and without model obstacles are considered for numerical simulations. The numerical predictions are first validated against the recent experiments carried out by Gexcon as part of the HySEA project supported by the Fuel Cells and Hydrogen 2 Joint Undertaking (FCH 2 JU) under the Horizon 2020 Framework Programme for Research and Innovation. The effects of congestion within the containers on the generated overpressures are investigated. The preliminary CFD predictions indicated that the container walls deflections are having considerable effect on the trends of generated overpressures, especially the peak negative pressure generated within the container is overestimated. Hence to account for the container wall deflections, the fluid structure interactions (FSI) are also included in the numerical modelling. The final numerical predictions are presented with and without the FSI. The FSI modelling considerably improved the numerical prediction and resulted in better match of overpressure trends with the experimental results
    corecore