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Abstract

This paper introduces imperfect information, learning, and risk aversion in a two
sided matching model. The model provides a theoretical framework for the com-
monly occurring phenomenon of cohabitation followed by marriage, and is con-
sistent with empirical findings on these institutions. The paper has three major
results. First, individuals set higher standards for marriage than for cohabitation.
When the true worth of a cohabiting partner is revealed, some cohabiting unions
are converted into marriage while others are not. Second, individuals cohabit
within classes. Third, the premium that compensates individuals for the higher
risk involved in marriage over a cohabiting partnership is derived. This premium
can be decomposed into two parts. The first part is a function of the individual’s
level of risk aversion, while the second part is a function of the difference in risk
between marriage and cohabitation.
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1. Introduction

There are not many among the married who can claim that their spouses have
remained the same as they were on their wedding day. Individuals marry and
subsequently discover new characteristics in their spouses. Some of these char-
acteristics may come as pleasant surprises; finding out that your spouse is an
excellent cook is one example. However, it is evident from the high rate of di-
vorce in many countries that many surprises are not as pleasant.

Because divorce can be psychologically painful and costly, some researchers
hypothesize that couples may choose to cohabit instead of marrying. Whether
cohabitation is a result of increased divorce rates is unclear; Waters and Ressler
(1999) study state level data on cohabitation and divorce and conclude that the
causality between divorce and cohabitation runs in both directions. What is
clear however, is that cohabitation as a life style has gained in popularity in
recent decades. This is particularly the case in North America and Europe. For
example, between the mid 1970s and the late 1980s the percentage of women aged
20-24 who were in cohabiting unions rose from 11% to 49% in France (Kiernan
1996).

Although prevalent, cohabitation is short-lived. It tends to precede marriage
rather than replace it. Bumpass and Sweet (1989) use data from the United
States and find that 40% of all cohabiting couples either marry or stop living
together within a year, and only a third of cohabiting couples are still cohabiting
after two years. They also find that 60% of those who marry after living in a
cohabiting union, marry their cohabiting partners. This is corroborated by more
recent data from the United Kingdom; Ermisch and Franscesconi (1999) also
find that more than half of first cohabiting unions are converted into marriage.
The most frequently cited reason for unmarried individuals living together is to
assess compatibility before marriage (Bumpass et al. 1991). This indicates that
for many couples, cohabitation serves as a probationary period.

The goal of this paper is to develop a theoretical model consistent with the
observed facts on cohabitation. As is evident from empirical findings, cohabita-
tion is often transitory and is often viewed as a kind of trial marriage. It appears
to involve less commitment as cohabiting unions are more likely to dissolve than
marriages.

The model developed in this paper adopts the view that couples cohabit be-
cause they want to evaluate one another as potential spouses. They find out each
others suitability as spouses while living together. Upon finding this out, they
either marry or separate. In addition, this study introduces imperfect informa-
tion, learning and relaxes the assumption of risk neutrality; a new feature in the
growing literature on two-sided matching models (see Burdett and Coles 1999 for
a survey). It extends Rao Sahib and Gu (2000), in which premarital cohabitation
and subsequent marriage are investigated in a risk neutral setting.
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The remainder of the paper is organized as follows. Section 2 discusses the
model. Section 3 describes the decision making of couples. The role of risk in
cohabiting and marital unions is discussed in section 4. Section 5 shows that
cohabiting unions occur within classes and section 6 concludes the paper.

2. Search in the marriage market

2.1. The modelling framework

This subsection describes the modelling framework. It is a steady state matching
model with nontransferable utility and heterogeneous agents as developed in Bur-
dett and Coles (1997), hereafter simply BC. As our model is an extension of this
model and we retain some of the terminology used, we begin by first describing
the BC model. We then describe how our model differs from the BC model.

A model of a decentralized marriage market in which positive assortative
mating arises as an equilibrium outcome is developed in BC. The positive as-
sortative mating found in BC is in terms of a comprehensive index. This index,
termed pizazz, captures the worth of an individual as a marriage partner. If a
couple marry, they each receive as utility the pizazz of the other. Equilibrium
is characterized by a class partition. Men and women form classes with mar-
riages occurring only among members of the same class. There exists an ordering
among classes; men and women with high pizazz marry one another while men
and women with low pizazz marry one another. The type of assortative mating
found in BC is somewhat different from the usual notion of assortative mating
found in sociological and biosocial studies. In the latter, positive assortative mat-
ing refers to a positive correlation between the traits of couples, for example, a
positive correlation in age, education or height. Not all two-sided search mod-
els yield positive assortative mating as an equilibrium outcome; see for example,
Shimer and Smith (2000).

Narcissism is ruled out in the BC model. Having high pizazz is useful only
because it allows one to attract opposite sex individuals who also have high
pizazz, and increases the utility from marriage. The optimal policy for a single
individual to follow is to marry the first single encountered of the opposite sex
whose pizazz is above a certain reservation level. The steady state is characterized
by a constant distribution of pizazz among the pool of single individuals and a
balanced flow of market exits and entries.

In this paper, we deviate from the BC framework in four ways. First, BC
assume that an individual’s pizazz can be observed on contact. In their model,
individuals who find a suitable spouse, marry and leave the marriage market for-
ever. In contrast, we assume that single individuals can observe the true pizazz of
a potential partner only imperfectly (we retain however, the term pizazz to mean
the worth of an individual as a marriage partner). This provides a motivation for

2



cohabiting unions which are initiated by single men and women in an attempt
to learn each other’s true worth as marriage partners. Of course, cohabitation is
just one interpretation of this information collecting period; it can also be called
courtship or dating. Couples continue to cohabit until true pizazz is revealed,
and at that point, they either marry or separate1.

Second, in BC, individuals leave the marriage market through marriage or
death, and there is an exogenous in-flow of new singles into the market. In
our model, however, cohabiting unions sometimes dissolve resulting in singles
re-entering the marriage market.

Third, it is assumed in BC that individuals are risk neutral. We relax the
assumption of risk neutrality and consider the case when individuals are risk
averse. This allows us to derive a general expression for the risk premium for
marriage over a cohabiting union.

Fourth, although it is not explicitly stated in BC, the distribution of offers
of marriage from opposite-sex singles faced by an agent first-order stochastically
dominates the distribution faced by an agent from a lower pizazz class. This
continues to hold for the offer distributions involved in our model. However, the
introduction of uncertainty and learning allows us to use the concept of second-
order stochastic dominance to analyze the role of risk in cohabiting and marital
unions.

We retain however, several of the assumptions made in BC. We assume that
a large and equal number of male and female singles participate in a marriage
market. Although couples first cohabit and then marry, we continue to refer to
this pool of singles as the marriage market. Clearly, as men and women either
cohabit or marry and leave the singles market, the distribution of pizazz will
change over time. However, we assume as in BC, that singles are only partially
rational and believe that the environment is stationary. This implies that they
believe that the distribution of pizazz in the singles market for both men and
women is constant over time. This is an important assumption as we assume
that individuals follow stationary strategies.

Individuals are assumed to adopt utility maximizing strategies given the be-
haviour of other singles in the market. In particular, it is assumed that partici-
pants in the marriage market seek to maximize the expected discounted lifetime
utility by searching for the best possible matches, discounted at a rate r to the
present. The optimal policy to be followed by individuals consists of a certain
set of opposite sex singles to whom they will make offers of cohabitation if they
meet. Individual lifetimes follow an exponential distribution, and the probability
that an individual dies in time interval of duration h is δh.

Pairs of market distributions of pizazz for men and women which are con-

1Chade (1999) also develops a model in which individuals observe one anothers’ type im-
perfectly. However, in his model, individuals never learn one others’ true type. After matching
on imperfectly observed type, they leave the market forever.
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sistent with flow-in and flow-out distributions that are equal, make up the set
of steady state equilibria. Our focus however, is on the decision problem faced
by couples rather than the calculation of steady state equilibria. In our model,
the calculation of the steady state is complicated by the fact that in addition to
outflows of singles due to marriage and death, cohabiting unions and marriages
may dissolve resulting in individuals re-entering the singles market.

We next describe our model in which couples are assumed to first cohabit and
then marry.

2.2. The model with cohabitation

We assume as it is often the case, that singles have difficulty contacting members
of the opposite sex and meet bilaterally (this is in contrast to Bloch and Ryder
2000 in which couples are matched via a centralized matching procedure). In
addition, a single who proposes to cohabit with a member of the opposite sex may
be rejected. To capture this uncertainty in initiating a cohabiting relationship, we
assume that for any single in the market, the rate at which offers of cohabitation
arrive follows a Poisson process.

In the rest of the paper, we simplify exposition by considering the decision
maker to be a single woman who follows an optimal search strategy to find a
potential marriage partner (the arguments are identical for the case of a single
man, and are dealt with by symmetry). We assume that when a woman meets
a man, she only observes his pizazz imperfectly. She observes y, though his true
pizazz is x. Symmetrically, the man also obtains a noisy observation y on the
woman’s pizazz x. We assume that singles believe that the distributions of both
true pizazz and observed pizazz are time-invariant. We refer to x as true pizazz
and y as observed pizazz.

The distribution of true pizazz among men is denoted GM (x). That is, if
a woman meets a man, then GM (x) is the probability that the man’s pizazz
is no greater than x, or alternatively, GM (x) may be used to denote the pro-
portion of men in the market whose pizazz is lower than x. Similarly, one can
define women’s pizazz distribution, denoted GW (x). For simplicity, we assume
GM (x) = GW (x) = G (x) = P (X ≤ x) with support [x, x]. In this sense, the
search-matching process is random.

We assume that observed pizazz is the sum of true pizazz and random noise.
That is, the woman observes y, a realization of Y , the random variable used to
denote observed pizazz. We assume that Y = X +ε and ε is independent of X.
Also, it is assumed that E (ε) = 0 and V ar (ε) is small.

Upon observing y, the woman forms an expectation of the true pizazz of
the man, E(X | Y = y) denoted m(y) or simply m (see the Appendix for an
example when there are two types of husbands). Although m is expected true
pizazz conditional on observed pizazz, for the sake of brevity, we will refer to m
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simply as expected pizazz. She then faces two choices. The first is to enter into
a cohabiting union with him. The second is to remain single in the hope of a
better draw from the same distribution in the next period.

Here, m can be interpreted is the Bayes estimate of x, denoted x̂. This
estimate is obtained by minimizing a risk function: minx̂ Ex|y 1

2
(x̂− x)2. No-

tice that this is the expectation of a quadratic loss function with respect to
the posterior distribution. For example, consider the case when X ∼ N (µ, σ2),
ε ∼ N (0, σ2

ε) and Y = X+ ε with ε⊥X. Then, x̂ = m (y) = wµ + (1 − w) y
where w = σ2

ε/ (σ2 + σ2
ε).

We make two assumptions. The first (A1) is that m′(y) > 0. This implies
that m is increasing in y. This captures the common view that first impressions
matter. If a man looks like he would be a good husband, then the woman will
believe that he is likely to be a good husband. This assumption is satisfied in the
normal distribution case mentioned above, as m′ (y) = 1 − w > 0.

Moreover, the assumption that m is increasing in y is useful because m is
then invertible. The support of M denoted [m,m] =

[
m(y),m(y)

]
. Denoting the

distribution of M by F (m) we can write

F (m) = P (M ≤ m) = P (Y ≤ y (m)) = FY (y (m))

where y = y (m) is the inverse function of m = m (y) .

Note that in this model, a single woman deciding whether or not to enter
a cohabiting relationship has two pieces of information available to her. One is
the observed pizazz of a potential partner y. The other is her knowledge of the
distribution of true pizazz conditional on observed pizazz (more details about
this distribution may be found in note 2 of the Appendix). This distribution is
denoted distribution is QX|Y (x | y) = P (X ≤ x | Y = y).

Using these two pieces of information, she calculates m(y). All decisions re-
garding whether or not to enter a cohabiting relationship or stay in one are based
on m. By basing inference on m instead of y, the woman increases the preci-
sion of her inference about true pizazz. For the case of the normal distribution
mentioned above, M ∼ N (µ, σ2

m) where σ2
m = σ4/ (σ2 + σ2

ε). Notice that

σ2
m < σ2 < σ2

y

as σ2
y = σ2 + σ2

ε . Also, notice that σ2
m|x which is (1 − w)2 σ2

ε) is less than σ2
y|x

(= σ2
ε).

In addition, a woman’s own attractiveness, captured by her pizazz, determines
the pizazz and the number of men that she can attract. That is, women with
high pizazz are able to attract men who also have high pizazz. However, a woman
who has high worth as marriage partner may not appear to have high worth as a
marriage partner. This depends on the distribution of true pizazz conditional on
observed pizazz. A woman may have a ‘bad’ day, and appear less attractive than
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she really is. That is, her observed pizazz, y is equal to the sum of x and a large
negative draw from the noise distribution. Alternatively, a woman who has low
pizazz may be lucky and appear more attractive than she really is. Given that y is
an imperfect indicator of true pizazz, one could ask if a possible strategy may be
for the woman to simply state her true pizazz, when she meets a man. However,
men who encounter a woman are more likely to trust their own judgment than
the pizazz stated by the woman. They trust their own estimate of her true
pizazz based on observed pizazz. As a result, as true pizazz is revealed only at
some moment in cohabitation, what affects a woman’s cohabitation prospects are
estimates of her true pizazz based on observed pizazz, m = E(X | Y = y).

Notice however, that a woman’s m is random from her own point of view.
She does not know the realization of observed pizazz that will occur when she
encounters a man. However, the expected discounted utility of rejecting an offer
of cohabitation and continuing to be single denoted R, is constant in search
models of this type. Therefore, as m is stochastic, we parameterize R by m̃e

instead of parameterizing it with m. Here, m̃e is the woman’s expectation of her
m conditional on her private knowledge of her own true pizazz, x. We refer to
this woman as an m̃e-type woman. That is, m̃e = E(m(y) | x) = Eε(m(x + ε)).
In the case of the normal distribution, m̃e = wµ + (1 − w)x. Notice that this
is a weighted average of two quantities. The first quantity is her true type, x.
The second quantity is her estimate of the estimate made by the man she meets,
which is µ. In this expression, µ = E(M) = E(E(X | Y )) = E(X).

There exists a set of men who are willing to cohabit with a m̃e-type woman.
We denote the distribution of m among such men by F (m | m̃e). As m is in-
vertible, the conditional distribution QX|Y (x | y) may be expressed in terms of
m, and can be written as Q(x,m) or more precisely as Q(x,m | m̃e). This is the
distribution of true pizazz x conditional on observed pizazz y = y(m) among men
who are willing to cohabit with a woman with conditional expected pizazz m̃e.

We denote by α the total arrival rate of offers of cohabitation from all men
faced by a particular woman. As men and women face different opportunities
based on their attractiveness, a fraction of these offers, denoted α (m̃e) are re-
ceived by a woman with m̃e, and α (m̃e) ≤ α.

As cohabiting unions are initiated based on a noisy signal of an individual’s
worth as a marriage partner, some cohabiting unions progress to marriage when
couples discover each other’s true worth as marriage partners while others dis-
solve. We assume that the rate at which cohabiting unions evolve into marriage
also follows a Poisson process with rate λ. This transition to marriage is also
related to a woman’s type and the rate faced by a m̃e-type woman is written
as λ (m̃e). Those women who are more attractive are more likely to transit to
marriage. Those who are less attractive are more likely to have their cohabiting
unions dissolve so that they must return to the singles pool.

The second assumption (A2) we make concerns Q(x,m | m̃e). We assume that
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∂Q (x,m | m̃e) /∂m < 0. This assumption implies that for any given mB < mA

we have Q(x,mA | m̃e) < Q(x,mB | m̃e) for all x ∈ SX . That is, Q(x,mA | m̃e)
first order stochastically dominates Q(x,mB | m̃e). Recall that a distribution
function:

F (x) first order stochastically dominates G(x) if

F (x) ≤ G(x) for all x. (1)

In addition, if F (x) first order stochastically dominates G(x), then for a non-
decreasing function u(x), we have

EG(x)u(x) < EF (x)u(x) (2)

For example, suppose that a single woman encounters two single men, denoted
A and B with observed pizazz yA and yB respectively. Assume that man A
appears to be the better partner than man B. That is, yB < yA. Since we have
assumed that m′(y) > 0, this implies that mB < mA. The assumption of first
order stochastic dominance implies the following: for any value of true pizazz x,
the probability that the true pizazz of man A is more than x is greater than the
probability that the true pizazz of man B is more than x.

This holds in the case of the normal distribution mentioned above. In this
case,

∂Q (x,m | m̃e) /∂m = − 1

σ1

φ
(
x−m

σ1

)
< 0

where φ (·) is the standard normal density. Recall that (X | y) ∼ N (m,σ2
1) where

σ2
1 = wσ2 and w = σ2

ε/ (σ2 + σ2
ε).

We can consider the matching process leading to marriage as occurring in
three stages. In the first stage, which can be regarded as a “pre-draw” stage,
a single individual is in the marriage market. In this stage, she only knows the
distribution of expected true pizazz conditional on observed pizazz, F (m).

In the second stage, the woman draws x (a draw from the distribution of true
pizazz) but observes y (a draw from the distribution of observed pizazz). She
chooses to cohabit with him if his value of m (her inference of his true pizazz
based on y) exceeds a certain threshold level, denoted mr. This threshold level,
mr is her reservation level of expected true pizazz conditional on observed pizazz.
If she enters a cohabiting union with a man with expected pizazz m, she receives
utility equal to u(m) during that period. If not, she remains single and the
process repeats itself in the next period. It is of course possible that she herself
is rejected by the man she has encountered, in which case she has no choice but
to remain single until the next period.

Sometime during the cohabitation period, the true pizazz of each partner is
revealed to the other. This marks the third stage. We assume for simplicity that
learning occurs only once and only during cohabitation. At this point, each party
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must decide whether to maintain or quit the current match. If the couple choose
to maintain the match, they are assumed to establish a formal marriage and leave
the marriage forever. If the cohabiting couple do not to marry, they are assumed
to separate.

This distinction is made only to aid understanding. Events in fact occur at
random intervals, because of the Poisson assumption that underlies the processes
of cohabitation and marriage. The next section develops the formal model further
in terms of these three stages. The optimal policy to be followed in each stage is
derived and for ease of exposition, we continue to assume that the decision maker
is a woman.

3. The decision making process

3.1. Stage 1: being single

This is the “pre-draw” stage, when a m̃e-type woman is in the singles market.
At this stage, she observes neither x nor y. She only knows F (m), the distribu-
tion of expected true pizazz conditional on observed pizazz. Standard dynamic
programming arguments yield,

R (m̃e) =
1

1 + rh

[
um̃e

(0)h + α (m̃e)hEmVm̃e
(m) + (1 − α (m̃e)h)R (m̃e)

]
+o (h) .

(3)
In the above, R (m̃e) is the expected discounted utility of being single in the
current period and following an optimal policy from the next period onward.
The term um̃e

(0) is the utility received in the current period. This term is in
fact, um̃e

(m) where m is the expected pizazz of her cohabiting partner. However,
she has no partner at this stage and therefore the argument of um̃e

(·) is zero. The
term α (m̃e)h is the probability that the woman receives an offer of cohabitation
during the short time interval h. The expected discounted value of having an
offer from an m-type man is denoted EmVm̃e

(m). An m-type man is one whose
expected true pizazz conditional on observed pizazz is m. The term, 1−α (m̃e)h
is the probability that no offer of cohabitation is received in the time period h.
In this case, the woman has no choice but to remain single till the next period.

We assume for now that um̃e
(m) = m. Letting h → 0, we have o (h) /h → 0

and we can rewrite (3) to obtain

R (m̃e) =
α (m̃e)

r + α (m̃e)
EmVm̃e

(m) . (4)

A reservation pizazz policy is the optimal policy to be followed in this stage; this
is demonstrated in section 3.4.
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3.2. Stage 2: should we live together?

At this stage, the woman encounters a man and based on his observed pizazz,
estimates his true pizazz. That is, she calculates E(X | Y = y) or simply m. The
woman is confronted with two alternatives: continue to be single or enter into a
cohabiting union with the man she has encountered. The value function at this
stage is:

Vm̃e
(m) = max

{
ϕm̃e

(m) , R (m̃e)
}
. (5)

In the above expression, ϕm̃e
(m) is the expected discounted utility of accepting

an offer of cohabitation from an m-type man and behaving optimally from the
next period onwards. This term can be written as follows:

ϕm̃e
(m) =

1

1 + rh

[
u (m)h + λ (m̃e)hEx|mJm̃e

(x) + (1 − λ (m̃e)h)ϕm̃e
(m)

]
+o (h) .

(6)
The first term u (m)h is the utility received in the short time interval h of being
in a cohabiting union with a man with expected pizazz equal to m. The term
λ (m̃e)h is the probability that the woman receiving a proposal for marriage
from her cohabiting partner in time interval h. The value of receiving an offer of
marriage and behaving optimally next period onwards is denoted Jm̃e

(x). Notice
that the expectation of this value function is taken with respect to x conditional
on m. In the event that no offer of marriage is received during time interval h, and
this occurs with probability (1 − λ (m̃e)h), the woman remains in a cohabiting
relationship. We continue to assume that um̃e

(m) = m. Then, as h → 0 (??)
reduces to

ϕm̃e
(m) =

m + λ (m̃e)Ex|mJm̃e
(x)

r + λ (m̃e)
. (7)

It should be pointed out that there is no uncertainty about true pizazz being
revealed at some moment during cohabitation. When this occurs, couples either
marry or separate. However, the optimal policy to be followed is determined ex-
ante, before any offers of marriage are made. Therefore, we need to introduce the
Poisson parameter λ (m̃e), which links the cohabitation stage and the marriage
stage of the model. The optimal policy to be followed in this stage is also derived
in section 3.4.

3.3. Stage 3: should we marry?

Stage 3 is when the woman finds out the true pizazz, x, of her cohabiting part-
ner. She then chooses to either separate from him or marry him. Assuming that
the woman receives as utility, the true pizazz of her husband in each time pe-
riod following marriage, that is um̃e

(x) = x, then the utility from marriage is
ψm̃e

(x) = x/r = ψ (x). This is based on the assumption that once a couple
marry, they stay married forever and never return to the singles market. If the
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woman does not marry, she returns to the singles market and the expected dis-
counted utility she receives is then R (m̃e), as discussed in stage 1. Therefore,
the value function at this stage can be written as

Jm̃e
(x) = max

{
ψm̃e

(x) , R (m̃e)
}

(8)

The optimal strategy to be followed at this stage is a reservation pizazz policy.
The woman marries her cohabiting partner if his true pizazz, x ≥ xr where

xr = rR (m̃e) = ψ−1 (R (m̃e)) . (9)

In the above equation, xr is the woman’s minimum acceptable level of pizazz.
This result depends on the constancy of R (m̃e) w.r.t. x which is shown next.

3.4. Derivation of optimal strategies.

We first show that the optimal strategy to be followed in stage 2 is a reservation
pizazz strategy. To show this, we first demonstrate that ϕm̃e

(m) is strictly in-
creasing in m. To this end, we first examine the expectation of value function in
stage 3. This is:

EJ
x|m (x) = Ex|m max

{
ψm̃e

(x) , R (m̃e)
}
. (10)

Evaluating the above expression (see the Appendix for details) yields:

Ex|mJm̃e
(x) =

1

r

x∫
ψ−1(R(m̃e))

[1 −Q (x,m | m̃e)] dx + R (m̃e) (11)

which is a function of (m, m̃e). Differentiating w.r.t. m we obtain,

∂Ex|mJm̃e
(x)

∂m
=

1

r

x∫
ψ−1(R(m̃e))

[
−∂Q (x,m | m̃e)

∂m

]
dx > 0 (12)

because of assumption A2.
This allows for an additional interpretation of assumption A2. Notice from

(10) that Jm̃e
(x) is nondecreasing in x. Using EQ (·) to denote the expectation

taken using distribution Q, we can write

EQ(x,mB |m̃e)Jm̃e
(x) < EQ(x,mA|m̃e)Jm̃e

(x) (13)

as Q(x,mA | m̃e) first order stochastically dominates Q(x,mB | m̃e). The in-
equality in (13) can clearly be seen to hold by examining (11). This may be

10



explained as follows: Suppose that a woman cohabits with a man with condi-
tional mean pizazz mA as opposed to cohabiting with a man with conditional
mean pizazz mB and that mB < mA. Then the woman’s expected discounted
utility of following an optimal strategy when the true pizazz of her cohabiting
partner is revealed is higher in the case of man A than it is in the case of man B.

The assumption that ∂Q(x,m | m̃e)/∂m < 0 is important in terms of the
mathematics of the model. Next, it is used in proving that ϕm̃e

(m) is increasing in
m. Recall that ϕm̃e

(m) is the expected discounted utility of being in a cohabiting
union in the current period and following an optimal strategy from the next
period onward. Differentiating (7):

∂ϕm̃e
(m)

∂m
=

1

r + λ (m̃e)

[
1 + λ (m̃e)

∂Ex|mJm̃e
(x)

∂m

]
. (14)

Substituting (12) in the above yields:

∂ϕm̃e
(m)

∂m
=

1

r + λ (m̃e)

1 +
λ (m̃e)

r

x∫
ψ−1(R(m̃e))

[
−∂Q (x,m | m̃e)

∂m

]
dx

 > 0,

(15)
because of assumption A2. This ensures that a unique solution to the stage-2
problem exists. The optimal strategy to be followed in stage 2 is also a reservation
pizazz policy. An m̃e-type woman cohabits with a man if his estimated pizazz
m ≥ mr where mr = ϕ−1

m̃e
(R (m̃e)).

To solve for the rejection utility for stage 1, we first evaluate the expectation
of (5), which can be written as follows

EVm̃e
(m) = EM max

{
ϕm̃e

(m) , R (m̃e)
}
. (16)

Evaluating the above (see the Appendix for the derivation of the following equa-
tion), yields the rejection utility for this m̃e-type woman:

R (m̃e) =
α (m̃e)

r (r + λ (m̃e))

m∫
ϕ−1

m̃e
(R(m̃e))

[1 − F (m | m̃e)] (17)

×

1 − λ (m̃e)

r

x∫
ψ−1(R(m̃e))

∂Q (x,m | m̃e)

∂m
dx

 dm
Notice that from the above equation, it is clear that R (m̃e) does not depend on
particular values of x or m. This constancy is important in establishing that a
reservation strategy is optimal in stages 2 and 3.

11



Blackwell’s theorem (see Sargent 1987) ensures that there exists a unique solu-

tion to this functional equation in R (m̃e) which is continuous in
[
ϕ−1

m̃e
(R (m̃e)) ,m

]
.

By symmetry, we will have another functional equation in R (me) for an me-type
man as the decision-maker, which is identical to (17) except that me and m̃e

are exchanged. The assumption that men and women face the same underlying
distribution, that is GM (x) = GW (x) allows us to use the symmetry argument.
These two equations are used to derive the results on class partitioning which
will be discussed in the next section.

Since the rest of the paper deals with matching and class partitions, we simply
denote the type of the decision maker as m̃e. The type of the potential partners
of this decision maker is denoted me. As long as a sorting result is attained for
one sex, the same can be derived for the other sex by symmetry. This symmetric
equilibrium induces sorting of individuals at the aggregate level.

4. Stochastic dominance and the class partition

In this section, we show that cohabiting unions occur only between couples in the
same class and that there is an ordering among classes. The number of classes is
finite. We prove these results by establishing a series of lemmas.

Lemma 1. During the search for a cohabiting partner, the distribution of m
among opposite-sex singles faced by a m̃e-type single first-order stochastically
dominates the distribution of m among opposite sex singles faced by an ˜̃me-type
single if ˜̃me < m̃e. That is, F (m | m̃e) < F

(
m | ˜̃me

)
.

Proof: In what follows, m′ denotes the upper bound of the distribution of M̃e.

F (m | m̃e) = P
(
M ≤ m | M̃e ≤ m′) = P (M ≤ m | M ≤ m′)

= F (m) /F (m′) , for m ≤ m ≤ m′, and m̃e ≤ m′

In the above, we substitute m′ in place of the conditioning variable m̃e; m
′ will

in fact be determined later in the matching process. We can replace M̃e by M
because we assume that beliefs are rational and because the distribution of pizazz
is the same for both men and women. Notice that F (m | m̃e) is a truncated
distribution with truncated support [m,m′]. As m̃e decreases, its upper bound
may or may not fall and the resultant support will shrink if the bound does
fall, thus generating a series of truncated distributions. Because F (m | m̃e) <

F
(
m | ˜̃me

)
for ˜̃me ≤ m′′, m̃e ≤ m′ and m′′ < m′, we have the result that

F (m | m̃e) first-order stochastically dominates F
(
m | ˜̃me

)
.

Lemma 2. A cohabiting individual with expected pizazz (m̃e) of either sex is
more likely to attract a spouse of higher true pizazz than a cohabiting individual
with lower expected pizazz ˜̃me.

12



Proof: No truncation is required in this case, instead we simply specify the
following:

Q (x,m | m̃e) = Q (x,m) for m ≤ m′ and ∀x ∈ [x, x] , where m̃e ≤ m′

In this case, the support for the conditional distribution does not shrink. How-
ever, it is the upper bound m′ of the parameterizing variable m̃e that defines the
range of m. The cohabitor’s m has the same upper bound as the decision-maker.
The stochastic dominance property still holds, as desired. For example, if ˜̃me

≤ m′′, m̃e ≤ m′, m′′ < m′, and if ˜̃me < m̃e, then it follows from assumption A2
that the family of distributions Q (x,m | m̃e) first-order stochastically dominates

that of distributions Q
(
x,m | ˜̃me

)
.

Lemma 3. A higher-type individual of either sex faces a higher arrival rate both
of offers of cohabitation and of offers of marriage than his or her competitors of
lower types.

Proof: α (m̃e) = αF (m′) for m̃e ≤ m′, which says that α (m̃e) is calculated by
discounting the overall arrival rate of cohabitation offers α at a rate of [1−F (m′)]
because with such a probability no opposite-sex singles with type m greater than
m′ are willing to propose to a m̃e-type person for cohabitation. By the same
logic, the arrival rate of marriage offers faced by either sex must undergo the
discounting procedure such as: λ (m̃e) = λF (m′) for m̃e ≤ m′.

Notice that these lemmas already contain some of the elements related to
class partitioning. Singles are better off proposing to opposite sex singles of
either the same type as themselves or of a lower type. However, the lower bound
of preferences of singles is not yet clear. These lemmas are concerned only with
the upper bound of compatible partners’ pizazz levels. Further results based on
reservation pizazz policies are needed to identify lower bounds of pizazz intervals
within which couples can be matched.

Lemma 1 may be interpreted as defining the opportunity set for a person
of type m̃e, [m,m′] ≡ Mopp. Any opposite-sex single with m higher than m′

is unattainable. The reservation pizazz policy derived from the search model
determines the acceptance set [mr,m] ≡ Macc for this person. Any opposite-sex
below the lower bound mr is considered unacceptable. Then, the intersection
of the two sets, Mopp ∩ Macc, identifies the set of opposite-sex partners that are
both attainable and acceptable to this person. This is a set of mutually agreeable
pizazz types. Note that the reservation demand of opposite-sex singles determines
the upper bound of this set while the single’s own reservation demand decides its
lower bound.

Lemma 4. The best single of either sex accepts any opposite sex single in the
top class. That is, the single whose m̃e = m will cohabit with a member of the
opposite sex with m ∈ (m1,m] and marry a member of the opposite sex with x
∈ (x1, x].

13



Proof: Consider the case of the woman whose m̃e = m whom we refer to as
the best woman. Using lemmas 1, 2 and 3, we can show that F (m | m) = F (m) ,
Q (x,m | m) = Q (x,m) , for m ∈ [m,m] , x ∈ [x, x] , and α (m) = α, λ (m) = λ.
From this and from (17), we find that the expected discounted utility of being
single for the best woman satisfies the following equation:

R ≡ R (m) =
α

r (r + λ)

m∫
ϕ−1

m (R)

[1 − F (m)]

1 − λ

r

x∫
ψ−1(R)

∂Q (x,m)

∂m
dx

 dm (18)

Solving this equation for R determines the best single’s reservation demand for
the pizazz types of his or her cohabitors and spouses. We define: mr (m) =

ϕ−1
m

(
R

)
≡ m1 and xr (m) = ψ−1

(
R

)
≡ x1.

We have now established that the best woman will cohabit with men whose
m ∈ (m1,m] and marry men with x ∈ (x1, x]. We refer to men whose m ∈ (m1,m]
as making up the top class for cohabiting unions and men whose x ∈ (x1, x] as
making up the top class for marital unions. By symmetry, the top-class of women
can also be defined. Notice that the best man will not necessarily cohabit or marry
the best woman. This is the outcome of a positive discount rate and the difficulty
in encountering singles of the opposite sex.

Lemma 5. A top-class single of either sex cohabits and marries any top-class
single of the opposite sex.

Proof: This is a natural corollary of lemma 4, can be proved rigorously as fol-
lows. As we have shown that the best man will accept any woman in the top-class
as a partner, all men must be willing to accept women in the top class as part-
ners. This implies that any woman with m̃e ∈ (m1,m) faces the same prospects
as the best woman. She faces the entire distribution of pizazz among men and the
total arrival rate of offers from all men. Therefore, for such women, F (m | m̃e)
= F (m), Q (x,m | m̃e) = Q (x,m), for m ∈ [m,m], x ∈ [x, x], and α (m̃e) = α,
λ (m̃e) = λ. Substituting these quantities into (17) yields the expected discounted
utility of being single for such a woman:

R (m̃e) =
α

r (r + λ)

m∫
ϕ−1

m̃e
(R(m̃e))

[1 − F (m)]

1 − λ

r

x∫
ψ−1(R(m̃e))

∂Q (x,m)

∂m
dx

 dm
(19)

Equations 7 and 11 and lemmas 2 and 3 imply ϕ−1
m̃e

(·) = ϕ−1
m (·). Notice that (19)

and (18) are identical except that the term R (m) appears in (18) while the term
R (m̃e) appears in (19). Therefore, R (m̃e) = R for m̃e ∈ (m1,m]. Therefore, the
reservation values of women in the top class other than the best woman, mr (m̃e)
and xr (m̃e), are identical to the reservation values of the best woman: m1 and
x1, respectively.
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Lemma 6. A second-class single of either sex accepts any second-class single of
the opposite sex. That is singles with m ∈ (m2,m1] cohabit with each other while
couples with whose x ∈ (x2, x1] marry each other.

Proof: Consider a woman who is not in the top class but she is the best
among all women who are not in the top class. That is, her m̃e = m1. This
woman will be rejected by all men in the top class, but she is the most attractive
among women not in the top class. From lemma 1, 2 and 3, she faces F (m | m1)
= F (m) /F (m1), Q (x,m | m1) = Q (x,m), for m ∈ [m,m1], x ∈ [x, x], and
α (m1) = αF (m1), λ (m1) = λF (m1). Using these results, and applying (17)
to the shrunk support [m,m1] results in the expected discounted utility of being
single for this woman:

R1 ≡ R (m1) =
α

r (r + λF (m1))

m1∫
ϕ−1

m1
(R1)

[F (m1) − F (m)] (20)

1 − λF (m1)

r

x∫
ψ−1(R1)

∂Q (x,m)

∂m
dx

 dm
Solving the above for R1 identifies the men that form the second-class: m ∈
(m2,m1], x ∈ (x2, x1], where m2 = ϕ−1

m1
(R1), x2 = ψ−1 (R1). By symmetry, one

can also obtain the second-class of women. By the same reasoning as in the proof
of lemma 5, we have R (m̃e) = R1 for m̃e ∈ (m2,m1], and lemma 6 then follows.

Proposition 1 Singles in class-i only accept opposite-sex singles in the same
class, 1 ≤ i ≤ n, where n is a finite number.

Proof: Repeating the procedures in lemma 4, 5, 6, and applying mathematical
induction, one can conclude that R (m̃e) is a non-decreasing step function so that
Rn−1 < · · · < R1 < R. Class partitioning is such that (m <)mn < · · · < m1 < m
and (x <)xn < · · · < x1 < x. It can be proved by contradiction that n is finite.
The proof is identical to the one in BC in which the number of classes that make
up the class partition for marriage is shown to be finite.

The implications of this theorem are as follows: (1) singles can be split up
into n distinct classes. In equilibrium, matches, either cohabiting or marital, take
place only between the two sexes in the same class; (2) the class partition for mar-
riage is consistent with that of cohabitation; (3) the aggregate matching induced
by class partitioning is not Pareto optimal due to imperfect information. That
is, a low-type single can increase her welfare through mismatch in cohabitation
and this can be achieved by mis-signalling at the partner’s expense. A cohabitor
of higher type will suffer from a utility loss in comparison to what she could
get when matched with a partner of the same class under perfect information.
What is more, she faces the prospect of re-entering the marriage market after
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the relationship dissolves. The next section addresses the issue of risk in greater
detail.

5. Risk premia, cohabitation and marriage

This section addresses issues related to the risk of mis-match and the risk aversion
of the individual. For simplicity, we omit the conditioning variable m̃e in what
follows. The results are obtained by linking the agent’s optimal policies in stages
2 and 3. We begin with the following proposition:

Proposition 2 Individuals are more discriminating when they marry than when
they cohabit. That is, reservation values for potential spouses are higher than
reservation values for potential cohabiting partners.

Proof: If we consider a woman in the top class, then her m̃e ∈ [m1,m] and R (m̃e)
= R. If we write mr in place m1 and xr in place of x1 to emphasize that these
are reservation cut-off levels, then ϕm̃ (mr) = R and ψ (xr) = R. Therefore, from
(7) we have,

R =
mr + λEx|m=mrJ (x)

r + λ
(21)

Using Rr = xr and rearranging terms yields,

λ
[
Ex|m=mrJ (x) −R

]
= xr −mr.

Using (34) from the Appendix we have,

RP ≡ xr −mr =

(
λ

r

) x∫
xr

(x− xr) dQ(x,mr) > 0. (22)

The above equation holds not just for the top class, but for any class2. Notice
that (22) has two interpretations. The first is an interpretation similar to the one
found in the search literature on the costs and benefits of search. The left hand
side represents the opportunity cost of searching one more time with a marriage
proposal of xr at hand. The right hand side represents the prospective benefit
of this search which is the expected discounted utility associated with a future
draw of x > xr. Individuals set lower reservation levels for cohabitation than for

2The general relation related to (22) for class i or m̃e ∈ (mi,mi−1] should take the form of

xi − mi =
λ

r

xi−1∫
xi

(x − xi) dxQ (x,mi)

Since Q (x,m | m̃e) = Q (x,m) for ∀ m ≤ mi−1 according to lemma 2, evaluating this at m
= mi yields Q (x,mi | m̃e) = Q (x,mi).
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marriage because observed pizazz is a noisy signal of true pizazz. As cohabitation
unions precede marriage, individuals may miss out on the right husband or wife
by setting reservation levels for cohabitation too high.

A second interpretation is based on a comparison of the distributions F (m)
and G (x) and noting that F (m) second-order stochastically dominates G (x).
That is, G (x) is riskier than F (m). Recall that G (x) is the distribution of true
pizazz while F (m) is the distribution of expected pizazz. Before a single indi-
vidual receives any offers, there are only two pieces of information available: the
individual’s prior distributions of G (x) and F (m). Based on this, the individual
has to make an ex-ante decision on the optimal policy to be followed when cohab-
iting or marrying. For example, in the normal distribution case, it can be shown
that G (x) is just a mean-preserving spread of F (m) since µm = µx and σ2

m < σ2
x.

Since the distributions have equal means, the individual’s response when facing
the riskier distribution G (x), is to become more choosy. The term RP can be
interpreted as a kind of risk premium that compensates the individual for the
higher risk in marriage versus cohabitation.

Proposition 3 Higher reservation values for cohabitation translate into higher
reservation values for marriage. Consider two individuals indexed i, i = k and
k + 1. Then,

mk
r > mk+1

r ⇒ xk
r > xk+1

r . (23)

Proof: Combining the optimal search policies in stage 2 and 3 we have, xr = rR
= rϕ (mr). Using (14), we have dxr/dmr = rϕ′ (mr) > 0.

Proposition 4 Individuals who set higher reservation values for cohabitation are
more risk averse than others. That is,

RP ′ (mr) ≥ 0 ⇔
x∫

x(mr)

[
−∂Q (x,mr)

∂mr

]
dx ≥ P (x ≥ xr | m = mr)

Proof: This follows from (34) and (35), from which we know that

x∫
xr

(x− xr) dQ(x,mr) =

x∫
xr

[1 −Q(x,mr)]dx.

The above derivation uses (22) as an implicit function: x = x (m). This proposi-
tion asserts that the risk premium rises with the level of reservation cohabitation
pizazz, provided that the probability that the partner satisfies the individual’s
reservation demand is lower than the degree of stochastic dominance.

Proposition 5 For any individual in any class, the risk premium to compensate
for the higher risk of marriage over cohabitation is equal to the quantity of risk
multiplied by its price.
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Proof: Re-writing (22) to its equivalent:

xr −mr = P (x < xr | m = mr)E [ξ (xr − x) | x < xr,m = mr] (24)

In the above, the quantity of risk3, P (x < xr | m = mr) , is the probability that
the true pizazz of the cohabiting partner turns out to be below the woman’s
reservation cut-off for marriage even though he was acceptable as a cohabiting
partner. The ‘price’ of this risk is the expectation of ξ (xr − x), conditional on
this disappointing revelation. The term ξ = (1 + r/λ)−1 < 1 is the multiplier
in the measurement of the risk. The higher the discount rate r, and the lower
the transition rate λ of cohabitation to marriage, the smaller is the effect of this
multiplier on the price of risk. The term, (xr −mr), is the loss in utility compared
with what the woman would have gained had she chosen a partner with x > xr

as well as m ≥ mr (that is, if the woman had chosen a man who was both a good
cohabiting partner as well as a good husband).

So far, individuals are assumed to be risk neutral. We now relax this as-
sumption. Note however, that relaxing this assumption does not alter the results
obtained in the last section.

Proposition 6: For a risk averse individual, the total risk premium can be
decomposed into two parts. One is (xr −mr), this compensates the individual for
bearing the risk due to the second-order stochastic dominance of F (m) over G (x);
the other part is ξRPpa which is a function of the individual’s risk aversion.

Proof: We assume that the individual’s utility function u (x), possesses the usual
properties of being strictly increasing and concave. Therefore, (22) can then be

3Stringently, the quantity of risk for class i should be measured as

P (x < xi | mi ≤ m < mi−1) =

xi∫
−∞

f (x | yi ≤ y < yi−1) dx

using y′ (m) > 0. In addition,

f (x | yi ≤ y < yi−1) =

yi−1∫
yi

f (x, y) dy/

yi−1∫
yi

fY (y) dy

and the price of risk for this class is ξ multiplied by

E (xi − x | x < xi,mi ≤ m < mi−1) =

xi∫
−∞

yi−1∫
yi

(xi − x) f (x, y) dxdy/

∞∫
−∞

yi−1∫
yi

f (x, y) dxdy.

However less stringently, one can condition on m = mr in (24) in addressing the issue of
mismatch risk. This is the risk that the current partner is only good enough as a cohabitor
since m = mr but not good enough to be a spouse since x < xr.
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written as:

u (xr) − u (mr) =
λ

r

x∫
xr

[u (x) − u (xr)] dxQ (x,mr) > 0 (25)

Since the utility function is assumed to be increasing, we have u (xr) > u (mr).
The application of Jensen’s inequality to the above equation yields

u (xr) − u (mr) < P (x < xr | m = mr)E [ξ (u (xr) − u (x)) | x < xr,m = mr]

We can consider x as mr plus an actuarially neutral gamble of z (= x−mr) in the
sense that Ex|mrz = 0. Taking the second order Taylor series expansion of u (x)
around mr, the first-order expansion of u (xr) around mr, and using the Arrow-
Pratt measure of local risk premium (see chapter 4 of Copeland and Weston 1979
for a derivation) yields:

RPpa = −
(
σ2 (z | mr)

2

)
u′′ (mr)

u′ (mr)
> 0

Here RPpa captures the difference between the quantities on both sides of Jensen’s
inequality or the degree of the agent’s risk aversion if the risk in question is not
too large. Mathematical manipulation yields

xr −mr + ξRPpa = P (x < xr | m = mr)E [ξ (xr − x) | x < xr,m = mr]

−ξ

2

u′′ (mr)

u′ (mr)

xr∫
x

(x−mr)
2 dxQ (x,mr)

Introducing the modified Pratt-Arrow local risk premium results in:

RPM
pa = −σ2 (z | x > xr,m = mr)

2

u′′ (mr)

u′ (mr)
.

Taking the Taylor series expansions once again gives

xr −mr + ξRPM
pa = P (x < xr | m = mr)E [ξ (xr − x) | x < xr,m = mr] (26)

which reduces to (24) if u′′ = 0. This result however depends on the assumption
that σ2

ε is small enough so that the quantity of risk is not very large, and the
Arrow-Pratt approximation may be used.

6. Conclusion

Marriages today are commonly preceded by a period of cohabitation. For many
couples, this period of cohabitation serves as a trial marriage. It is a period in
which they can decide if their cohabiting partner is the right choice as a spouse.
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Despite a vast empirical literature, mainly in demography, there are few theo-
retical models that can be used to study the modern phenomenon of cohabitation
followed by marriage. This paper develops such a model. The framework used is
a two sided search-matching model. To this framework, the paper adds imperfect
information, learning and risk; new concepts in the search-matching literature.
This extended model is consistent with empirical findings from demographic stud-
ies on cohabitation and marriage.
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Appendix

Note 1: The calculation of m (y) when there are two types of husbands.
This note gives an example of the case when husbands are of two types: good and
bad. Denote the type of the husband by the random variable X. Assume that X
takes on two possible values xG and xB with probability p and 1− p respectively.
Good husbands are men who have pizazz xG, while bad husbands are men who
have pizazz xB.

In addition, when a woman meets a man, he can either appear to be a good
husband or appear to be a bad husband. That is, his observed pizazz, y is a
realization of the random variable Y , and can take on one of two values, yg or
yb. Those that seem like good husbands have observed pizazz yg while those that
seem like bad husbands have observed pizazz have yb. However, appearances are
not always to be trusted, as some bad husbands may appear to be good husbands
and vice versa.

The discrete (two-type) counterpart of m (y) is xGP (xG | y) + xBP (xB | y).
A woman then infers her partner’s true type x from his signal y according to
Bayes’ law:

P (xG | y) =
P (y | xG) p

P (y | xG) p + P (y | xB) (1 − p)

Notice that P (xB | y) = 1 −P (xG | y).
Let α = P (yg | xG). Note that α is the probability that a good husband

looks like a good husband (he correctly signals his type). Then, the posterior
probability that a man is a good husband given that he looks like a good husband,
is

P (xG | yg) =
αp

αp + (1 − α) (1 − p)

which is positively related to α and p.
For comparison, the continuous counterpart of [P (xG | y) , P (xB | y)] is f (x | y)

= f (y | x) fX (x) /fY (y). The continuous counterpart to (α, 1 − α) is f (y | x).

Note 2: The joint distribution of observed and true pizazz.
Suppose that the joint density of true pizazz, X and observed pizazz, Y is denoted
fX,Y (x, y). The distribution of true pizazz conditional on observed pizazz is:

QX|Y (x | y) = Pr(X ≤ x | y) =

∫ x
x fX,Y (x, y)dx∫ x
x fX,Y (x, y)dx

. (27)

The expectation of true pizazz conditional on observed pizazz denoted m(y) can
be written as

m(y) = E(X | Y = y) =
∫ x

x
xqX|Y (x | y)dx =

∫ x
x xfX,Y (x, y)dx∫ x
x fX,Y (x, y)dx

. (28)
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Since m is increasing in y, the support of m is [m,m] = [m(y),m(y)]. It is
then legitimate to invert the function m, denoted y(m). The distribution of the
random variable M = E(X | Y ) is given by

F (m) = Pr(M ≤ m) = Pr [Y (m) ≤ y(m)] =
∫ y(m)

y

∫ x

x
fX,Y (x, y)dxdy (29)

Therefore,
QX|Y (x | y) = QX|Y (x | y(m)) ≡ Q(x,m), (30)

with domain SX × SM where SX = [x, x] and SM = [m,m].

Derivation of (11).

The expectation of the value function in stage 3 ((10)) is

Ex|mJ = Ex|m max
[
ψm̃e

(x) , R(m̃e)
]
.

Recall that in the above, the decision maker is a woman. Her expected true
pizazz conditional on observed pizazz (based on her private knowledge of her
own x) is denoted m̃e. The true pizazz of the potential husband is denoted x
and his expected true pizazz conditional on his observed pizazz y, is denoted m.
Expanding the above, we obtain,

Ex|mJ = Pr(ψm̃e
(x) ≥ R(m̃e))Ex|m

[
ψm̃e

(x) | ψm̃e
(x) ≥ R(m̃e)

]
(31)

+
[
Pr(ψm̃e

(x) < R(m̃e))
]
R(m̃e).

The policy to be followed by the woman is to marry her cohabiting partner if
his true pizazz, x is greater than a threshold level, xr. That is, Pr(ψm̃e

(x) ≥
R(m̃e)) = Pr(x ≥ xr) and Pr(ψm̃e

(x) < R(m̃e)) = Pr(x < xr). Using xr =
rR(m̃e), (31), may be simplified as follows

EJ =
1

r
{Pr(x ≥ xr | y) [E (x | x ≥ xr)] + Pr(x < xr | y)xr} (32)

Adding and subtracting the term Pr(x > xr | y)xr to RHS of eq32) and re-
arranging terms yields,

EJ =
1

r
{Pr(x ≥ xr | y) [E (x | x ≥ xr) − xr] + xr} (33)

Recall that in the above, Pr(x ≥ xr | y) is in fact conditional on the woman’s own
expected pizazz based on her private knowledge of her true pizazz. Therefore, we

write
x∫

xr

dQ(x,m | m̃e) in place of Pr(x ≥ xr | y). Using xr = rR(m̃e), (33) may

be written as

EJ =
1

r


x∫

xr

(x− xr) dQ(x,m | m̃e)

 + R(m̃e). (34)
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The term
x∫

xr

(x− xr) dQ(x,m | m̃e) can be integrated by parts (this is done using a

change of variable technique; denoting Q(x,m | m̃e) by G(x), and using dG(x) =
−d [1 −G(x)]). In addition, using ψm̃e

(xr) = R(m̃e) yields (11) in the text of
the paper:

EJ =
(

1

r

) x∫
ψ−1

m̃e
(R(m̃e))

[1 −Q(x,m | m̃e)] dx + R(m̃e). (35)

Derivation of (17):

Recall that the expectation of the value function (from (5) in stage 2 is

EVm̃e
(m) = EM max

{
ϕm̃e

(m) , R (m̃e)
}
. (36)

We begin by re-writing (4):

(α(m̃e) + r)R(m̃e) = α(m̃e)EM max
{
ϕm̃e

(m), R(m̃e)
}

(37)

The RHS of the above equation can be shown to equal

α(m̃e)
{
P (ϕm̃e

(m) < R(m̃e))R(m̃e)
}

+

α(m̃e)
{
P (ϕm̃e

(m) ≥ R(m̃e))E
[
ϕm̃e

(m)|ϕm̃e
(m) ≥ R(m̃e)

]}
Therefore, eq(37) can be written as:

rR(m̃e) = α(m̃e)P (ϕm̃e
(m) ≥ R(m̃e))

{
E

[
ϕm̃e

(m)|ϕm̃e
(m) ≥ R(m̃e)

]
−R(m̃e)

}
.

Using ϕm̃e
(mr) = R(m̃e), the above equation can be re-written as

R(m̃e) =
α(m̃e)

r

m∫
mr

[
ϕm̃e

(m) − ϕm̃e
(mr)

]
dF (m | m̃e)

= −α(m̃e)

r

m∫
mr

[
ϕm̃e

(m) − ϕm̃e
(mr)

]
d(1 − F (m | m̃e)).

Integrating by parts and noting that F (m | m̃e) = 1 yields

R(m̃e) =
α(m̃e)

r

m∫
mr

[1 − F (m | m̃e)]ϕ
′
m̃e

(m)dm. (38)

Substituting (15) in the above yields
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R (m̃e) =
α (m̃e)

r (r + λ (m̃e))

m∫
ϕ−1

m̃e
(R(m̃e))

[1 − F (m | m̃e)] (39)

×

1 − λ (m̃e)

r

x∫
ψ−1(R(m̃e))

∂Q (x,m | m̃e)

∂m
dx

 dm
which is (17) in the text of the paper.
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