431 research outputs found
Euclidean Greedy Drawings of Trees
Greedy embedding (or drawing) is a simple and efficient strategy to route
messages in wireless sensor networks. For each source-destination pair of nodes
s, t in a greedy embedding there is always a neighbor u of s that is closer to
t according to some distance metric. The existence of greedy embeddings in the
Euclidean plane R^2 is known for certain graph classes such as 3-connected
planar graphs. We completely characterize the trees that admit a greedy
embedding in R^2. This answers a question by Angelini et al. (Graph Drawing
2009) and is a further step in characterizing the graphs that admit Euclidean
greedy embeddings.Comment: Expanded version of a paper to appear in the 21st European Symposium
on Algorithms (ESA 2013). 24 pages, 20 figure
Study of ñ-transfer reaction 28Si( 7Li, t) 32S
The 28Si( 7Li, t) 32S reaction has been studied at 48 MeV. Using a ñt potential overlap based on a microscopic cluster model, the full finite-range distorted wave Born approximation analysis was carried out for nine low-lying states; 0.0 MeV (0+), 2.23 MeV (2+), 3.78 MeV (0+), 4.46 MeV (4+), 5.01 MeV (3-), 5.80 MeV (1-), 6.76 MeV (3-), 7.43 MeV (1-) and 8.49 MeV (1-) of the residual nucleus. A re-analysis was also done for the same states of 32S having an ñd overlap for the reaction 28Si (6Li, d) 32S at 75.6 MeV. Theoretical spectroscopic factors have been calculated for the measured even-parity states of 32S using the shell model code OXBASH. The spectroscopic factors were compared for both the reactions
UK export performance research - review and implications
Previous research on export performance has been criticized for being a mosaic of autonomous endeavours and for a lack of theoretical development. Building upon extant models of export performance, and a review and analysis of research on export performance in the UK for the period 1990-2005, an integrated model of export performance is developed and theoretical explanations of export performance are put forward. It is suggested that a multi-theory approach to explaining export performance is viable. Management and policy implications for the UK emerging from the review and synthesis of the literature and the integrated model are discussed
Comparative genomic hybridization and amplotyping by arbitrarily primed PCR in stage A B-CLL
Cytogenetic analysis is useful in the diagnosis and to assess prognosis of B-cell chronic lymphocytic leukemia (B-CLL). However, successful cytogenetics by standard techniques has been hindered by the low in vitro mitotic activity of the malignant B-cell population. Fluorescence in situ hybridization (FISH) has become a useful tool, but it does not provide an overall view of the aberrations. To overcome this hurdle, two DNA-based techniques have been tested in the present study: comparative genomic hybridization (CGH) and amplotyping by arbitrarily primed PCR (AP-PCR). Comparative genomic hybridization resolution depends upon the 400-bands of the human standard karyotype. AP-PCR allows detection of allelic losses and gains in tumor cells by PCR fingerprinting, thus its resolution is at the molecular level. Both techniques were performed in 23 patients with stage A B-CLL at diagnosis. The results were compared with FISH. The sensitivity of AP-PCR was greater than CGH (62% vs. 43%). The use of CGH combined with AP-PCR allowed to detect genetic abnormalities in 79% (15/19) of patients in whom G-banding was not informative, providing a global view of the aberrations in a sole experiment. This study shows that combining these two methods with FISH, makes possible a more precise genetic characterization of patients with B-CLL
Supernova pointing with low- and high-energy neutrino detectors
A future galactic SN can be located several hours before the optical
explosion through the MeV-neutrino burst, exploiting the directionality of
--scattering in a water Cherenkov detector such as Super-Kamiokande. We
study the statistical efficiency of different methods for extracting the SN
direction and identify a simple approach that is nearly optimal, yet
independent of the exact SN neutrino spectra. We use this method to quantify
the increase in the pointing accuracy by the addition of gadolinium to water,
which tags neutrons from the inverse beta decay background. We also study the
dependence of the pointing accuracy on neutrino mixing scenarios and initial
spectra. We find that in the ``worst case'' scenario the pointing accuracy is
at 95% C.L. in the absence of tagging, which improves to
with a tagging efficiency of 95%. At a megaton detector, this accuracy can be
as good as . A TeV-neutrino burst is also expected to be emitted
contemporaneously with the SN optical explosion, which may locate the SN to
within a few tenths of a degree at a future km high-energy neutrino
telescope. If the SN is not seen in the electromagnetic spectrum, locating it
in the sky through neutrinos is crucial for identifying the Earth matter
effects on SN neutrino oscillations.Comment: 13 pages, 7 figures, Revtex4 format. The final version to be
published in Phys. Rev. D. A few points in the original text are clarifie
Advances in ab-initio theory of Multiferroics. Materials and mechanisms: modelling and understanding
Within the broad class of multiferroics (compounds showing a coexistence of
magnetism and ferroelectricity), we focus on the subclass of "improper
electronic ferroelectrics", i.e. correlated materials where electronic degrees
of freedom (such as spin, charge or orbital) drive ferroelectricity. In
particular, in spin-induced ferroelectrics, there is not only a {\em
coexistence} of the two intriguing magnetic and dipolar orders; rather, there
is such an intimate link that one drives the other, suggesting a giant
magnetoelectric coupling. Via first-principles approaches based on density
functional theory, we review the microscopic mechanisms at the basis of
multiferroicity in several compounds, ranging from transition metal oxides to
organic multiferroics (MFs) to organic-inorganic hybrids (i.e. metal-organic
frameworks, MOFs)Comment: 22 pages, 9 figure
Phase diagram of the LaCaMnO compound for
We have studied the phase diagram of LaCaMnO for using neutron powder diffraction and magnetization measurements. At
300 K all samples are paramagnetic and single phase with crystallographic
symmetry . As the temperature is reduced a structural transition is
observed which is to a charge-ordered state only for certain x. On further
cooling the material passes to an antiferromagnetic ground state with Neel
temperature that depends on x. For the structural
transformation occurs at the same temperature as the magnetic transition.
Overall, the neutron diffraction patterns were explained by considering four
phase boundaries for which LaCaMnO forms a distinct phase: the
CE phase at , the charge-ordered phase at x=2/3, the monoclinic and
C-type magnetic structure at and the G-type magnetic structure at
x=1. Between these phase boundaries the magnetic reflections suggest the
existence of mixed compounds containing both phases of the adjacent phase
boundaries in a ratio determined by the lever rule
- âŠ