20,253 research outputs found

    Cerimetric Titration of As(III) in Acetic Acid Medium

    Get PDF
    369-37

    Magnetic and electron transport properties of the rare-earth cobaltates, La0.7-xLnxCa0.3CoO3 (Ln = Pr, Nd, Gd and Dy) : A case of phase separation

    Full text link
    Magnetic and electrical properties of four series of rare earth cobaltates of the formula La0.7-xLnxCa0.3CoO3 with Ln = Pr, Nd, Gd and Dy have been investigated. Compositions close to x = 0.0 contain large ferromagnetic clusters or domains, and show Brillouin-like behaviour of the field-cooled DC magnetization data with fairly high ferromagnetic Tc values, besides low electrical resistivities with near-zero temperature coefficients. The zero-field-cooled data generally show a non-monotonic behaviour with a peak at a temperatures slightly lower than Tc. The near x = 0.0 compositions show a prominent peak corresponding to the Tc in the AC-susceptibility data. The ferromagnetic Tc varies linearly with x or the average radius of the A-site cations, (rA). With increase in x or decrease in (rA), the magnetization value at any given temperature decreases markedly and the AC-susceptibility measurements show a prominent transition arising from small magnetic clusters with some characteristics of a spin-glass. Electrical resistivity increases with increase in x, showed a significant increase around a critical value of x or (rA), at which composition the small clusters also begin to dominate. These properties can be understood in terms of a phase separation scenario wherein large magnetic clusters give way to smaller ones with increase in x, with both types of clusters being present in certain compositions. The changes in magnetic and electrical properties occur parallely since the large ferromagnetic clusters are hole-rich and the small clusters are hole-poor. Variable-range hopping seems to occur at low temperatures in these cobaltates.Comment: 23 pages including figure

    Field-induced Polar Order at the N\'eel Temperature of Chromium in Rare-earth Orthochromites: Interplay of Rare-earth and Cr Magnetism

    Full text link
    We report field-induced switchable polarization (P = 0.2 ~ 0.8 microC/cm2) below the N\'eel temperature of chromium (TN Cr) in weakly ferromagnetic rareearth orthochromites, RCrO3 (R=rareearth) but only when the rareearth ion is magnetic. Intriguingly, the polarization in ErCrO3 (TC ~ 133 K) disappears at a spin reorientation (Morin) transition (TSR ~ 22 K) below which the weak ferromagnetism associated with the Cr sublattice also disappears, demonstrating the crucial role of weak ferromagnetism in inducing the polar order. Further, the polarization (P) is strongly influenced by applied magnetic field, indicating a strong magneto electric effect. We suggest that the polar order occurs in RCrO3, due to the combined effect of poling field that breaks the symmetry and the exchange field on R ion from Cr sublattice stabilizes the polar state. We propose that a similar mechanism could work in the isostructural rareearth orthoferrites, RFeO3 as well.Comment: 31 pages (Manuscript(6 figures)+supplemental information(8 figures)

    Interplay of 4f-3d Magnetism and Ferroelectricity in DyFeO3

    Full text link
    DyFeO3 exhibits a weak ferromagnetism (TNFe ~ 645 K) that disappears below a spin-reorientation (Morin) transition at TSRFe ~ 50 K. It is also known that applied magnetic field induces ferroelectricity at the magnetic ordering temperature of Dy-ions (TNDy ~ 4.5 K). Here, we show that the ferroelectricity exists in the weak ferromagnetic state (TSRFe < T < TN,C) without applying magnetic field, indicating the crucial role of weak ferromagnetism in inducing ferroelectricity. 57Fe M\"ossbauer studies show that hyperfine field (Bhf) deviates from mean field-like behaviour that is observed in the weak ferromagnetic state and decreases below the onset of spin-reorientation transition (80 K), implying that the Bhf above TSR had additional contribution from Dy-ions due to induced magnetization by the weak ferromagnetic moment of Fe-sublattice and below TSR, this contribution decreases due to collinear ordering of Fe-sublattice. These results clearly demonstrate the presence of magnetic interactions between Dy(4f) and Fe(3d) and their correlation with ferroelectricity in the weak ferromagnetic state of DyFeO3.Comment: 5 pages, 6 figures, published in EP

    Solitary Dust--Acoustic Waves in a Plasma with Two-Temperature Ions and Distributed Grain Size

    Full text link
    The propagation of weakly nonlinear dust--acoustic waves in a dusty plasma containing two ion species with different temperatures is explored. The nonlinear equations describing both the quadratic and cubic plasma nonlinearities are derived. It is shown that the properties of dust--acoustic waves depend substantially on the grain size distribution. In particular, for solitary dust--acoustic waves with a positive potential to exist in a plasma with distributed grain size, it is necessary that the difference between the temperatures of two ion species be large that that in the case of unusized grains.Comment: 16 pages, 6 figure
    corecore