11 research outputs found

    Interactions between a magnon mode and a cavity photon mode mediated by traveling photons

    No full text
    We systematically study the indirect interaction between a magnon mode and a cavity photon mode mediated by traveling photons of a waveguide. From a general Hamiltonian, we derive the effective coupling strength between two separated modes, and obtain the theoretical expression of the system's transmission. Accordingly, we design an experimental setup consisting of a shield cavity photon mode, a microstrip line, and a magnon system to test our theoretical predictions. From measured transmission spectra, indirect interaction, as well as mode hybridization, between two modes can be observed. All experimental observations support our theoretical predictions. In this work we clarify the mechanism of traveling photon mediated interactions between two separate modes. Even without spatial mode overlap, two separated modes can still couple with each other through their correlated dissipations into a mutual traveling photon bus. This conclusion may help us understand the recently discovered dissipative coupling effect in cavity magnonics systems. Additionally, the physics and technique developed in this work may benefit us in designing new hybrid systems based on the waveguide magnonics.QN/Bauer Grou

    Coherent control of magnon radiative damping with local photon states

    No full text
    A magnon, the collective excitation of ordered spins, can spontaneously radiate a travelling photon to an open system when decaying to the ground state. However, in contrast to electric dipoles, magnetic dipoles by magnons are more isolated from the environment, limiting their radiation and coherent communication with photons. The recent progresses in strongly coupled magnon-photon system have stimulated the manipulation of magnon radiation via tailoring the photon states. Here, by loading an yttrium iron garnet sphere in a one-dimensional waveguide cavity supporting both the travelling and standing photon modes, we demonstrate a significant magnon radiative damping that is proportional to the local density of photon states (LDOS). By modulating the magnitude and/or polarization of LDOS, we can flexibly tune the photon emission and magnon radiative damping. Our findings provide a way to manipulate photon emission from magnon radiation, which could help harness angular momentum generation, transfer, and storage in magnonics.QN/Bauer Grou

    A processing chain for estimating crop biophysical parameters using temporal Sentinel-1 synthetic aperture radar data in cloud computing framework

    No full text
    Biophysical parameters are descriptors of crop growth and production estimates. Retrieval of these biophysical parameters from synthetic aperture radar sensors at operational scales is highly interesting given the increase in access to data from radar missions. Vegetation backscattering can be simulated using the water cloud model (WCM). Crop biophysical parameters are obtained by inverting this model. However, the inversion problem is ill-posed, and existing methods, which include the lookup table (LUT) and iterative search algorithms, are often computationally intensive and lack good generalization capacity. This might make retrieval of the biophysical parameters computationally intensive for large study areas. In addition, the new generation of operational missions, which are often associated with a large volume of data, poses a challenge for estimating crop parameters. In this work, we use the cloud computing potentials of the Google Earth Engine (GEE) to demonstrate a unified processing pipeline for WCM inversion. The processing pipeline (GEE4Bio) uses Sentinel-1 radar measurements for WCM inversion and subsequently produces crop biophysical maps. Inversion is achieved by employing Random Forest regression, which is trained with radar backscatter measurements at Vertical transmit and vertical receive (VV) and Vertical transmit and horizontal receive (VH) channels. The model is trained and validated with independent calibration and validation datasets consisting of ground measurements for five major crops over the Joint Experiment for Crop Assessment and Monitoring–Carman test site in Canada. The inversion accuracies indicate strong correlation coefficients (r) of 0.83 and 0.87, with the estimated and in situ measured plant area index and wet biomass, respectively, with low root mean square error values. The GEE4Bio processing chain produced crop inventory maps with a reasonable time and apprehended the variability in plant growth across the test site.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Mathematical Geodesy and Positionin

    The on-orbit calibration of DArk Matter Particle Explorer

    No full text
    The DArk Matter Particle Explorer (DAMPE), a satellite-based cosmic ray and gamma-ray detector, was launched on December 17, 2015, and began its on-orbit operation on December 24, 2015. In this work we document the on-orbit calibration procedures used by DAMPE and report the calibration results of the Plastic Scintillator strip Detector (PSD), the Silicon-Tungsten tracKer-converter (STK), the BGO imaging calorimeter (BGO), and the Neutron Detector (NUD). The results are obtained using Galactic cosmic rays, bright known GeV gamma-ray sources, and charge injection into the front-end electronics of each sub-detector. The determination of the boundary of the South Atlantic Anomaly (SAA), the measurement of the live time, and the alignments of the detectors are also introduced. The calibration results demonstrate the stability of the detectors in almost two years of the on-orbit operation

    The on-orbit calibration of DArk Matter Particle Explorer

    No full text
    The DArk Matter Particle Explorer (DAMPE), a satellite-based cosmic ray and gamma-ray detector, was launched on December 17, 2015, and began its on-orbit operation on December 24, 2015. In this work we document the on-orbit calibration procedures used by DAMPE and report the calibration results of the Plastic Scintillator strip Detector (PSD), the Silicon-Tungsten tracKer-converter (STK), the BGO imaging calorimeter (BGO), and the Neutron Detector (NUD). The results are obtained using Galactic cosmic rays, bright known GeV gamma-ray sources, and charge injection into the front-end electronics of each sub-detector. The determination of the boundary of the South Atlantic Anomaly (SAA), the measurement of the live time, and the alignments of the detectors are also introduced. The calibration results demonstrate the stability of the detectors in almost two years of the on-orbit operation

    The on-orbit calibration of DArk Matter Particle Explorer

    No full text
    The DArk Matter Particle Explorer (DAMPE), a satellite-based cosmic ray and gamma-ray detector, was launched on December 17, 2015, and began its on-orbit operation on December 24, 2015. In this work we document the on-orbit calibration procedures used by DAMPE and report the calibration results of the Plastic Scintillator strip Detector (PSD), the Silicon-Tungsten tracKer-converter (STK), the BGO imaging calorimeter (BGO), and the Neutron Detector (NUD). The results are obtained using Galactic cosmic rays, bright known GeV gamma-ray sources, and charge injection into the front-end electronics of each sub-detector. The determination of the boundary of the South Atlantic Anomaly (SAA), the measurement of the live time, and the alignments of the detectors are also introduced. The calibration results demonstrate the stability of the detectors in almost two years of the on-orbit operation

    Natural Products Derived from the Mediterranean Diet with Antidiabetic Activity: from Insulin Mimetic Hypoglycemic to Nutriepigenetic Modulator Compounds

    No full text

    Jet energy measurement and its systematic uncertainty in proton–proton collisions at

    No full text
    corecore