757 research outputs found
Does Openness to Trade Make Countries More Vulnerable to Sudden Stops, or Less? Using Gravity to Establish Causality
Openness to trade is one factor that has been identified as determining whether a country is prone to sudden stops in capital inflows, crashes in currencies, or severe recessions. Some believe that openness raises vulnerability to foreign shocks, while others believe that it makes adjustment to crises less painful. Several authors have offered empirical evidence that having a large tradable sector reduces the contraction necessary to adjust to a given cut-off in funding. This would help explain lower vulnerability to crises in Asia than in Latin America. Such studies may, however, be subject to the problem that trade is endogenous. Using the gravity instrument for trade openness, which is constructed from geographical determinants of bilateral trade, this paper finds that openness indeed makes countries less vulnerable, both to severe sudden stops and currency crashes, and that the relationship is even stronger when correcting for the endogeneity of trade.
Analysis of Embryoid Bodies Derived from Human Induced Pluripotent Stem Cells as a Means to Assess Pluripotency
Human induced pluripotent stem cells (hiPSCs) have core properties of unlimited self-renewal and differentiation potential and have emerged as exciting cell sources for applications in regenerative medicine, drug discovery, understanding of development, and disease etiology. Key among numerous criteria to assess pluripotency includes the in vivo teratoma assay that has been widely proposed as a standard functional assay to demonstrate the pluripotency of hiPSCs. Yet, the lack of reliability across methodologies, lack of definitive clinical significance, and associated expenses bring into question use of the teratoma assay as the “gold standard” for determining pluripotency. We propose use of the in vitro embryoid body (EB) assay as an important alternative to the teratoma assay. This paper summarizes the methodologies for creating EBs from hiPSCs and the subsequent analyses to assess pluripotency and proposes its use as a cost-effective, controlled, and reproducible approach that can easily be adopted to determine pluripotency of generated hiPSCs
Challenges in materials research for sustainable nuclear energy
Global energy demand is expected to increase steeply, creating an urgent need to evolve a judicious global energy policy, exploiting the potential of all available energy resources, including nuclear energy. With increasing awareness of environmental issues, nuclear energy is expected to play an important role on the energy scenario in the coming decades. The immediate thrust in the science and technology of nuclear materials is to realize a robust reactor technology with associated fuel cycle and ensure the cost competitiveness of nuclear power and to extend the service life of reactors to 100 years. Accordingly, the present-generation materials need to be modified to meet the demands of prolonged exposure to irradiation and extended service life for the reactor. Emerging nuclear systems incorporate features to ensure environmental friendliness, effective waste management, enhanced safety, and proliferation resistance and require development of high-temperature materials and the associated technologies. Fusion, on a longer horizon of about fve decades, also requires the development of a new spectrum of materials. The development of next-generation materials technology is expected to occur in short times and is likely to be further accelerated by strong international collaborations
A Simulation Based Study in a Hospital Emergency Department: Capacity and Workflow Issues
Emergency departments’ capacities to deal with a patient surge (the number of patients increases in a short period of time) play an important role in preparedness for natural or man-made disasters. This paper examines how emergency departments could improve their capacities by optimizing the workflow. A framework is proposed to reconfigure the workflow to improve capacity while maintaining treatment equality. Our results show that reducing lower priority processes and combining originally separate processes can shorten patient total waiting time in the emergency department
Need of luteinizing hormone for early pregnancy in the golden hamster (Mesocricetus auratus)
Administration of LH antiserum to intact pregnant hamsters on any day from Days 6 to 11 of pregnancy resulted in termination of gestation. Following LH antiserum injection, the ovarian weights were markedly reduced
Data Model Development for Fire Related Extreme Events - An Activity Theory and Semiotics Approach
Post analyses of major extreme events reveal that information sharing is critical for an effective emergency response. The lack of consistent data standards in the current emergency management practice however serves only to hinder efficient critical information flow among the incident responders. In this paper, we adopt a theory driven approach to develop a XML-based data model that prescribes a comprehensive set of data standards for fire related extreme events to better address the challenges of information interoperability. The data model development is guided by third generation Activity Theory and semiotics theories for requirement analyses. The model validation is achieved using a RFC-like process typical in standards development. This paper applies the standards to the real case of a fire incident scenario. Further, it complies with the national leading initiatives in emergency standards (National Information Exchange Model)
Development of fuels and structural materials for fast breeder reactors
Fast breeder reactors (FBRs) are destined to play a crucial role in the Indian nuclear power programme in the foreseeable future. FBR technology involves a multi-disciplinary approach to solve the various challenges in the areas of fuel and materials development. Fuels for FBRs have significantly higher concentration of fissile material than in thermal reactors, with a matching increase in burn-up. The design of the fuel is an important aspect which has to be optimised for efficient, economic and safe production of power. FBR components operate under hostile and demanding environment of high neutron flux, liquid sodium coolant and elevated temperatures. Resistance to void swelling, irradiation creep, and irradiation embrittlement are therefore major considerations in the choice of materials for the core components. Structural and steam generator materials should have good resistance to creep, low cycle fatigue, creep-fatigue interaction and sodium corrosion. The development of carbide fuel and structural materials for the Fast Breeder Test Reactor at Kalpakkam was a great technological challenge. At the Indira Gandhi Centre for Atomic Research (IGCAR), advanced research facilities have been established, and extensive studies have been carried out in the areas of fuel and materials development. This has laid the foundation for the design and development of a 500 MWe Prototype Fast Breeder Reactor. Highlights of some of these studies are discussed in this paper in the context of our mission to develop and deploy FBR technology for the energy security of India in the 21st century
Assessment of genetic diversity in bread wheat (Triticum aestivum L.) using RAPD markers
The present study aimed to evaluate the genetic diversity of 10 wheat cultivars by Random Amplified Pol-ymorphic DNA (RAPD) marker. The genomic DNA of 10 wheat genotypes were amplified with 10 RAPD primers that produced 53 amplified band, out of which 23 band were polymorphic (43.39%). The number of fragment amplified per primer ranged from 4 to 9. Primer A01 generated maximum number of amplified band, out of which 5 band were polymorphic. Cluster analysis of wheat genotypes were based on UPGMA method. Cluster analysis of 10 wheat genotypes were classified in to two main group; single variety AKW 1071 was placed in first group and rest 9 variety were placed in second group. The pair wise similarity values ranged from 0.58% to 100% and showed that cultivars Raj-3765 and K-7903 were the closest with highest similarity value (100%), while genotypes AKW 1071 and K9006 showed minimum similarity value (62%). The present study indicated the presence of high genetic diversity among wheat cultivars, which could be used for the developing core collection of wheat germplasm for breeding purpose
- …