2 research outputs found

    Comparative genomic hybridization and amplotyping by arbitrarily primed PCR in stage A B-CLL

    Get PDF
    Cytogenetic analysis is useful in the diagnosis and to assess prognosis of B-cell chronic lymphocytic leukemia (B-CLL). However, successful cytogenetics by standard techniques has been hindered by the low in vitro mitotic activity of the malignant B-cell population. Fluorescence in situ hybridization (FISH) has become a useful tool, but it does not provide an overall view of the aberrations. To overcome this hurdle, two DNA-based techniques have been tested in the present study: comparative genomic hybridization (CGH) and amplotyping by arbitrarily primed PCR (AP-PCR). Comparative genomic hybridization resolution depends upon the 400-bands of the human standard karyotype. AP-PCR allows detection of allelic losses and gains in tumor cells by PCR fingerprinting, thus its resolution is at the molecular level. Both techniques were performed in 23 patients with stage A B-CLL at diagnosis. The results were compared with FISH. The sensitivity of AP-PCR was greater than CGH (62% vs. 43%). The use of CGH combined with AP-PCR allowed to detect genetic abnormalities in 79% (15/19) of patients in whom G-banding was not informative, providing a global view of the aberrations in a sole experiment. This study shows that combining these two methods with FISH, makes possible a more precise genetic characterization of patients with B-CLL

    Characterization of nonrandom chromosomal gains and losses in multiple myeloma by comparative genomic hybridization

    Get PDF
    Clonal chromosomal changes in multiple myeloma (MM) and related disorders are not well defined, mainly due to the low in vivo and in vitro mitotic index of plasma cells. This difficulty can be overcome by using comparative genomic hybridization (CGH), a DNA-based technique that gives information about chromosomal copy number changes in tumors. We have performed CGH on 25 cases of MM, 4 cases of monoclonal gammopathy of uncertain significance, and 1 case of Waldenstrom's macroglobulinemia. G-banding analysis of the same group of patients demonstrated clonal chromosomal changes in only 13 (43%), whereas by CGH, the number of cases with clonal chromosomal gains and losses increased to 21 (70%). The most common recurrent changes detected by CGH were gain of chromosome 19 or 19p and complete or partial deletions of chromosome 13. +19, an anomaly that has so far not been detected as primary or recurrent change by G-banding analysis of these tumors, was noted in 2 cases as a unique change. Other recurrent changes included gains of 9q, 11q, 12q, 15q, 17q, and 22q and losses of 6q and 16q. We have been able to narrow the commonly deleted regions on 6q and 13q to bands 6q21 and 13q14-21. Gain of 11q and deletion of 13q, which have previously been associated with poor outcome, can thus be detected by CGH, allowing the use of this technique for prognostic evaluation of patients, without relying on the success of conventional cytogenetic analysis
    corecore