28,170 research outputs found

    Leprosy and tuberculosis concomitant infection: a poorly understood, age-old relationship

    Get PDF
    Historically, archaeological evidence, post-mortem findings and retro- spective analysis of leprosy institutions’ data demonstrates a high observed incidence of concomitant infection with leprosy and tuberculosis (TB). However, reports of concomitant infection in the modern literature remain scarce, with estimates of annual new case detection rates of concomitant infection at approximately 0·02 cases per 100,000 population. Whilst the mechanism for this apparent decline in concomitant infections remains unclear, further research on this topic has remained relatively neglected. Modelling of the interaction of the two organisms has suggested that the apparent decline in observations of concomitant infection may be due to the protective effects of cross immunity, whilst more recently others have questioned whether it is a more harmful relationship, predisposing towards increased host mortality. We review recent evidence, comparing it to previously held understanding on the epidemiological relationship and our own experience of concomitant infection. From this discussion, we highlight several under-investigated areas, which may lead to improvements in the future delivery of leprosy management and services, as well as enhance understanding in other fields of infection management. These include, a) highlighting the need for greater understanding of host immunogenetics involved in concomitant infection, b) whether prolonged courses of high dose steroids pre-dispose to TB infection? and, c) whether there is a risk of rifampicin resistance developing in leprosy patients treated in the face of undiagnosed TB and other infections? Longitudinal work is still required to characterise these temporal relationships further and add to the current paucity of literature on this subject matter

    Periodic variations of precipitation in the tropical Atlantic Ocean

    Get PDF
    Statistical analysis of the satellite-borne Electrically Scanning Microwave Radiometer data in the tropical Atlantic region reveals that the rainfall near local noon is higher both in frequency of occurrence and intensity than the rainfall in the same area near local midnight. Another striking feature that stands out from the analysis is an oscillation with a period of 3.3. days in rainfall occurrence and intensity. This periodicty is consistent with easterly waves traveling from the African continent to the region under study

    Magnetocaloric effect and nature of magnetic transition in nanoscale Pr0.5Ca0.5MnO3

    Full text link
    Systematic measurements pertinent to the magnetocaloric effect and nature of magnetic transition around the transition temperature are performed in the 10 nm Pr0.5Ca0.5MnO3 nanoparticles (PCMO10) . Maxwell relation is employed to estimate the change in magnetic entropy. At Curie temperature TC, 83.5 K, the change in magnetic entropy discloses a typical variation with a value 0.57 J/kg K, and is found to be magnetic field dependent. From the area under the curve Delta S vs T, the refrigeration capacity is calculated at TC, 83.5 K and it is found to be 7.01 J/kg. Arrott plots infer that due to the competition between the ferromagnetic and anti ferromagnetic interactions, the magnetic phase transition in PCMO10 is broadly spread over both in temperature as well as in magnetic field coordinates. Upon tuning the particle size, size distribution, morphology, and relative fraction of magnetic phases, it may be possible to enhance the magnetocalorific effect further in PCMO10.Comment: Accepted (Journal of Applied Physics) (In press

    Semi-empirical model for prediction of unsteady forces on an airfoil with application to flutter

    Get PDF
    A semi-empirical model is described for predicting unsteady aerodynamic forces on arbitrary airfoils under mildly stalled and unstalled conditions. Aerodynamic forces are modeled using second order ordinary differential equations for lift and moment with airfoil motion as the input. This model is simultaneously integrated with structural dynamics equations to determine flutter characteristics for a two degrees-of-freedom system. Results for a number of cases are presented to demonstrate the suitability of this model to predict flutter. Comparison is made to the flutter characteristics determined by a Navier-Stokes solver and also the classical incompressible potential flow theory

    New features of global climatology revealed by satellite-derived oceanic rainfall maps

    Get PDF
    Quantitative rainfall maps over the oceanic areas of the globe were derived from the Nimbus 5 Electrically Scanning Microwave Radiometer (ESMR) data. Analysis of satellite derived oceanic rainfall maps reveal certain distinctive characteristics of global patterns for the years 1973-74. The main ones are (1) the forking of the Intertropical Convergence Zone in the Pacific, (2) a previously unrecognized rain area in the South Atlantic, (3) the bimodal behavior of rainbelts in the Indian Ocean and (4) the large interannual variability in oceanic rainfall. These features are discussed

    Dynamic response of exchange bias in graphene nanoribbons

    Full text link
    The dynamics of magnetic hysteresis, including the training effect and the field sweep rate dependence of the exchange bias, is experimentally investigated in exchange-coupled potassium split graphene nanoribbons (GNRs). We find that, at low field sweep rate, the pronounced absolute training effect is present over a large number of cycles. This is reflected in a gradual decrease of the exchange bias with the sequential field cycling. However, at high field sweep rate above 0.5 T/min, the training effect is not prominent. With the increase in field sweep rate, the average value of exchange bias field grows and is found to follow power law behavior. The response of the exchange bias field to the field sweep rate variation is linked to the difference in the time it takes to perform a hysteresis loop measurement compared with the relaxation time of the anti-ferromagnetically aligned spins. The present results may broaden our current understanding of magnetism of GNRs and would be helpful in establishing the GNRs based spintronic devices.Comment: Accepted Applied Physics Letters (In press

    Some experiences with the viscous-inviscid interaction approach

    Get PDF
    Methods for simulating compressible viscous flow using the viscid-inviscid interaction approach are described. The formulations presented range from the more familiar full-potential/boundary-layer interaction schemes to a method for coupling Euler/Navier-Stokes and boundary-layer algorithms. An effort is made to describe the advantages and disadvantages of each formulation. Sample results are presented which illustrate the applicability of the methods

    Martensite-like transition and spin-glass behavior in nanocrystalline Pr0.5Ca0.5MnO3

    Full text link
    We report on isothermal pulsed (20 ms) field magnetization, temperature dependent AC - susceptibility, and the static low magnetic field measurements carried out on 10 nm sized Pr0.5Ca0.5MnO3 nanoparticles (PCMO10). The saturation field for the magnetization of PCMO10 (~ 250 kOe) is found to be reduced in comparison with that of bulk PCMO (~300 kOe). With increasing temperature, the critical magnetic field required to 'melt' the residual charge-ordered phase decays exponentially while the field transition range broadens, which is indicative of a Martensite-like transition. The AC - susceptibility data indicate the presence of a frequency-dependent freezing temperature, satisfying the conventional Vogel-Fulcher and power laws, pointing to the existence of a spin-glass-like disordered magnetic phase. The present results lead to a better understanding of manganite physics and might prove helpful for practical applications

    The Band Spectra of Thallium Iodide and Fluoride

    Get PDF

    Hydraulic Analogy for Isentropic Flow Through a Nozzle

    Get PDF
    Modelling aspects of isentropic compressible gas flow using hydraulic analogy are discussed. Subsonic and supersonic flows through a typical nozzle are simulated as free surface incompressible water flow in an equivalent 2-D model on a water table. The results are first compared for the well known classical analogy in order to estimate experimental errors. Correction factors for pressure and temperature, to account for non-ideal compressible gas flow are presented and the results obtained on the water table are modified and compared with gas dynamic solution. Within the experimental errors, it is shown that the hydraulic analogy can be used as an effective tool for the study of two dimensional isentropic flows of gases
    corecore