29,229 research outputs found

    Initial stages of cavitation damage and erosion on copper and brass tested in a rotating disk device

    Get PDF
    In view of the differences in flow and experimental conditions, there has been a continuing debate as to whether or not the ultrasonic method of producing cavitation damage is similar to the damage occurring in cavitating flow systems, namely, venturi and rotating disk devices. In this paper, the progress of cavitation damage during incubation periods on polycrystalline copper and brass tested in a rotating disk device is presented. The results indicate several similarities and differences in the damage mechanism encountered in a rotating disk device (which simulates field rotary devices) and a magnetostriction apparatus. The macroscopic erosion appears similar to that in the vibratory device except for nonuniform erosion and apparent plastic flow during the initial damage phase

    Characterization of erosion of metallic materials under cavitation attack in a mineral oil

    Get PDF
    Cavitation erosion and erosion rates of eight metallic materials representing three crystal structures were studied. The erosion experiments were conducted with a 20-kHz ultrasonic magnetostrictive oscillator in a viscous mineral oil. The erosion rates of the metals with an fcc matrix were 10 to 100 times higher than that of an hop-matrix titanium alloy. The erosion rates of iron and molybdenum, with bcc matrices, were higher than that of the titanium alloy but lower than those of those of the fcc materials. Studies with scanning electron microscopy indicated that the cavitation pits were initially formed at the grain boundaries and precipitates and that the pits formed at the junction of grain boundaries grew faster than the others. Transcrystalline craters formed by cavitation attack over the surface of grains and roughened the surfaces by multiple slip and twinning. Surface roughness measurements showed that the pits that formed over the grain boundaries deepened faster than pits. Computer analysis revealed that a geometric expression describes the nondimensional erosion curves during the time period 0.5 t (sub 0) t 2.5 t (sub 0), where t (sub 0) is the incubation period. The fcc metals had very short incubation periods; the titanium alloy had the longest incubation period

    The mechanism of erosion of metallic materials under cavitation attack

    Get PDF
    The mean depth of penetration rates (MDPRs) of eight polycrystalline metallic materials, Al 6061-T6, Cu, brass, phosphor bronze, Ni, Fe, Mo, and Ti-5Al-2.5Sn exposed to cavitation attack in a viscous mineral oil with a 20 kHz ultrasonic oscillator vibrating at 50 micron amplitude are reported. The titanium alloy followed by molybdenum have large incubation periods and small MDPRs. The incubation periods correlate linearly with the inverse of hardness and the average MDPRs correlate linearly with the inverse of tensile strength of materials. The linear relationships yield better statistical parameters than geometric and exponential relationships. The surface roughness and the ratio of pit depth to pit width (h/a) increase with the duration of cavitation attack. The ratio h/a varies from 0.1 to 0.8 for different materials. Recent investigations (20) using scanning electron microscopy to study deformation and pit formation features are briefly reviewed. Investigations with single crystals indicate that the geometry of pits and erosion are dependent on their orientation

    Characterization of erosion of metallic materials under cavitation attack in a mineral oil

    Get PDF
    Cavitation erosion and erosion rates of eight metallic materials representing three crystal structures were studied using a 20-kHz ultrasonic magnetostrictive oscillator in viscous mineral oil. The erosion rates of the metals with an fcc matrix were 10 to 100 times higher than that of an hcp-matrix titanium alloy. The erosion rates of iron and molybdenum, with bcc matrices, were higher than that of the titanium alloy but lower than those of the fcc metals. Scanning electron microscopy indicates that the cavitation pits are initially formed at the grain boundaries and precipitates and that the pits that formed at the triple points grew faster than the others. Transcrystalline craters formed by cavitation attack over the surface of grains and roughened the surfaces by multiple slip and twinning. Surface roughness measurements show that the pits that formed over the grain boundaries deepended faster than other pits. Computer analysis revealed that a geometric expression describes the nondimensional erosion curves during the time period 0.5 t(0) t 2.5 t(0), where t(0) is the incubation period. The fcc metals had very short incubation periods; the titanium alloy had the longest incubation period

    Cavitation Erosion of Copper, Brass, Aluminum and Titanium Alloys in Mineral Oil

    Get PDF
    The variations of the mean depth of penetration, the mean depth rate of penetration, MDRP, the pit diameter 2a and depth h due to cavitation attack on Al 6061-T6, Cu, brass of composition Cu-35Zn-3Pb and Ti-5A1-2.5Sn are presented. The experiments are conducted in a mineral oil of viscosity 110 CS using a magnetostrictive oscillator of 20 kHz frequency. Based on MDRP on the materials, it is found that Ti-5Al-2.5Sn exhibits cavitation erosion resistance which is two orders of magnitude higher than the other three materials. The values of h/a are the largest for copper and decreased with brass, titanium, and aluminum. Scanning electron microscope studies show that extensive slip and cross slip occurred on the surface prior to pitting and erosion. Twinning is also observed on copper and brass

    Cavitation pitting and erosion of aluminum 6061-T6 in mineral oil water

    Get PDF
    Cavitation erosion studies of aluminum 6061-T6 in mineral oil and in ordinary tap water are presented. The maximum erosion rate (MDPR, or mean depth of penetration rate) in mineral oil was about four times that in water. The MDPR in mineral oil decreased continuously with time, but the MDPR in water remained approximately constant. The cavitation pits in mineral oil were of smaller diameter and depth than the pits in water. Treating the pits as spherical segments, we computed the radius r of the sphere. The logarithm of h/a, where h is the pit depth and 2a is the top width of the pit, was linear when plotted against the logarithm of 2r/h - 1

    X-ray properties of the microquasar GRS 1915+105 during a variability class transition

    Get PDF
    We present a detailed X-ray study of the microquasar GRS 1915+105 during a variability class transition observed in 2000 June with the PPCs of the Indian X-ray Astronomy Experiment. We supplement this observation with data from the RXTE archives. The source made a transition from a steady low-hard state to a regular oscillatory behaviour in the light curve known as bursts or class `rho' (Belloni et al. 2000) between 2000 May 11 and 17 and reverted back to the low-hard state on 2000 June 27. A gradual change in the burst recurrence time from about 75 s to about 40 s was observed which then increased to about 120 s during the ~ 40 days of class `rho'. The regular bursts disappeared from the X-ray light curves and the class transition was observed to occur within 1.5 hours on 2000 June 27 with the PPCs. A correlation is found between the observed QPO frequency at 5-8 Hz in the quiescent phase and the average X-ray intensity of the source during the class `rho'. We notice a strong similarity between the properties of the source during the class `rho' and those during the oscillatory phase of the observations of class `alpha'. From the timing and spectral analysis, it is found that the observed properties of the source over tens of days during the class `rho' are identical to those over a time scale of a few hundreds of seconds in the class `alpha'. Examining the light curves from the beginning of the RXTE/PCA and RXTE/ASM observations, it is found that the change of state from radio-quiet low-hard state to high state occurs through the X-ray classes `rho' and `alpha' which appear together during the state transition. It is further inferred that the source switches from low-hard state to the class `rho' through the intermediate class `alpha'.Comment: 10 pages with 9 figures, LaTex. To be appeared in MNRA

    Different types of X-ray bursts from GRS 1915+105 and their origin

    Get PDF
    We report the X-ray observations of the Galactic X-ray transient source GRS 1915+105 with the PPCs of the Indian X-ray Astronomy Experiment(IXAE) onboard the Indian satellite IRS-P3 during 1997 June - August, which have revealed the presence of four types of intense X-ray bursts. All the observed bursts have a slow exponential rise, a sharp linear decay, and they can broadly be put in two classes: irregular and quasi-regular bursts in one class, and regular bursts in another class. The regular bursts are found to have two distinct time scales and they persist over extended durations. There is a strong correlation between the preceding quiescent time and the burst duration for the quasi-regular and irregular bursts. No such correlation is found for the regular bursts. The ratio of average flux during the burst time to the average flux during the quiescent phase is high and variable for the quasi- regular and irregular bursts while it is low and constant for the regular bursts. We suggest that the peculiar bursts that we have seen are charact- eristic of the change of state of the source. The source can switch back and forth between the low-hard state and the high-soft state near critical accretion rates in a very short time scale. A test of the model is presented using the publicly available 13-60 keV RXTE/PCA data for irregular and regular bursts concurrent with our observations.Comment: 13 pages, 12 figures, Accepted in APJ, emulateapj style use
    corecore