5 research outputs found

    The impact of electrogenic sulfide oxidation on elemental cycling and solute fluxes in coastal sediment

    Get PDF
    Filamentous sulfide oxidizing cable bacteria are capable of linking the oxidation of free sulfide in deep anoxic layers of marine sediments to the reduction of oxygen or nitrate in surface sediments by conducting electrons over centimeter-scale distances. Previous studies have shown that this newly discovered microbial process, referred to as electrogenic sulfide oxidation (e-SOx), may alter elemental cycling in sediments, but the nature and rates of the resulting biogeochemical transformations and their influence on benthic-pelagic coupling remain largely unknown. Here we quantify changes in sediment geochemistry and solute fluxes at the sediment–water interface as e-SOx develops and declines over time in laboratory incubations of organic-rich sediments from a seasonally hypoxic coastal basin (Marine Lake Grevelingen, The Netherlands).Our results show that e-SOx enhanced sediment O<sub>2</sub> consumption and acidified subsurface sediment, resulting in the dissolution of calcium carbonate and iron sulfide minerals in deeper sediment horizons and the associated accumulation of dissolved iron, manganese, and calcium in porewater. Remobilized Fe diffusing upward was reoxidized at the sediment–water interface, producing an amorphous Fe oxide crust, while dissolved Fe diffusing downward was reprecipitated in the form of FeS as it encountered the free sulfide horizon. The development of e-SOx enhanced the diffusive release of dissolved Mn at the sediment–water interface, capped the phosphate efflux, generated a buildup of organic matter in surface sediments, and strongly stimulated the release of alkalinity from the sediment. About 75% of this alkalinity production was associated with net CaCO<sub>3</sub> dissolution, while the remaining 25% was attributed to a pumping mechanism that transfers alkalinity from anodic H<sub>2</sub>S oxidation (an alkalinity sink) in deeper sediments to cathodic O<sub>2</sub> reduction (an alkalinity source) near the sediment–water interface. The resulting sediment alkalinity efflux buffers the release of dissolved inorganic carbon at the sediment–water interface, and may therefore counteract the influence of benthic respiration on coastal ocean pH. Overall, our results demonstrate that e-SOx development strongly affects the biogeochemical cycles of C, P, Ca, Fe, Mn, and S in coastal sediments

    The influence of pore-water advection, benthic photosynthesis, and respiration on calcium carbonate dynamics in reef sands

    Get PDF
    To investigate diel calcium carbonate (CaCO<sub>3</sub>) dynamics in permeable coral reef sands, we measured pore-water profiles and fluxes of oxygen (O<sub>2</sub>), nutrients, pH, calcium (Ca<sup>2+</sup>), and alkalinity (TA) across the sediment-water interface in sands of different permeability at Heron Reef, Australia. Background flushing rates were high, most likely as a result of infaunal burrow irrigation, but flux chamber stirring enhanced pore-water exchange. Light and pore-water advection fueled high rates of benthic primary production and calcification in sunlit surface sediments. In the light, benthic photosynthesis and calcification induced surface minima in Ca<sup>2+</sup> and TA and peaks in pH and O<sub>2</sub>. Oxygen penetration depth in coarse sands decreased from ~ 1.2 cm during the day to ~ 0.6 cm at night. Total oxygen uptake (TOU) in dark chambers was three to fourteen times greater than diffusive uptake and showed a direct effect of pore-water advection. Greater sediment oxygen consumption rates were observed in higher permeability sands. In the dark, TA release was not stimulated by increasing TOU because of a damping effect of pore-water advection on metabolic CaCO<sub>3</sub> dissolution efficiency. On a daily basis, CaCO<sub>3</sub> undergoes net dissolution in Heron Reef sands. However, pore-water advection can reverse the CaCO<sub>3</sub> budget and promote CaCO<sub>3</sub> preservation under the most energetic conditions

    Natural occurrence of microbial sulphur oxidation by long-range electron transport in the seafloor

    Get PDF
    Recently, a novel mode of sulphur oxidation was described in marine sediments, in which sulphide oxidation in deeper anoxic layers was electrically coupled to oxygen reduction at the sediment surface. Subsequent experimental evidence identified that long filamentous bacteria belonging to the family Desulfobulbaceae likely mediated the electron transport across the centimetre-scale distances. Such long-range electron transfer challenges some long-held views in microbial ecology and could have profound implications for sulphur cycling in marine sediments. But, so far, this process of electrogenic sulphur oxidation has been documented only in laboratory experiments and so its imprint on the seafloor remains unknown. Here we show that the geochemical signature of electrogenic sulphur oxidation occurs in a variety of coastal sediment environments, including a salt marsh, a seasonally hypoxic basin, and a subtidal coastal mud plain. In all cases, electrogenic sulphur oxidation was detected together with an abundance of Desulfobulbaceae filaments. Complementary laboratory experiments in intertidal sands demonstrated that mechanical disturbance by bioturbating fauna destroys the electrogenic sulphur oxidation signal. A survey of published geochemical data and 16S rRNA gene sequences identified that electrogenic sulphide oxidation is likely present in a variety of marine sediments with high sulphide generation and restricted bioturbation, such as mangrove swamps, aquaculture areas, seasonally hypoxic basins, cold sulphide seeps and possibly hydrothermal vent environments. This study shows for the first time that electrogenic sulphur oxidation occurs in a wide range of marine sediments and that bioturbation may exert a dominant control on its natural distribution
    corecore