20 research outputs found

    Sequential occurrence of thrombotic thrombocytopenic purpura, essential thrombocythemia, and idiopathic thrombocytopenic purpura in a 42-year-old African-American woman: a case report and review of the literature

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Thrombotic thrombocytopenic purpura and idiopathic thrombocytopenic purpura are two well recognized syndromes that are characterized by low platelet counts. In contrast, essential thrombocythemia is a myeloproliferative disease characterized by abnormally high platelet numbers.</p> <p>The coexistence of thrombotic thrombocytopenic purpura and idiopathic thrombocytopenic purpura in a single patient has been reported in the literature on a few occasions. However, having essential thrombocythemia complicating the picture has never been reported before.</p> <p>Case presentation</p> <p>We present a case where thrombotic thrombocytopenic purpura, essential thrombocythemia, and idiopathic thrombocytopenic purpura were diagnosed in a 42-year-old African-American woman in the space of a few years; we are reporting this case with the aim of drawing attention to this undocumented occurrence, which remains under investigation.</p> <p>Conclusions</p> <p>As the three conditions have different natural histories and require different treatment modalities, it is important to recognize that these diseases may be seen sequentially. This case emphasizes the importance of reviewing peripheral blood smears for evaluation of thrombocytopenia and bone marrow aspirations for diagnosis of thrombocythemia in order to reach an accurate diagnosis and tailor therapy accordingly. Moreover, this case demonstrates the variability and complexity of platelet disorders. This occurrence of three different types of platelet disorders in one patient remains a pure observation on our part; regardless, this does raise the possibility of a common underlying, as yet undiscovered, pathophysiology that could explain the phenomenon.</p

    Cell-Free DNA Analysis for Noninvasive Examination of Trisomy

    No full text
    BackgroundCell-free DNA (cfDNA) testing for fetal trisomy is highly effective among high-risk women. However, there have been few direct, well-powered studies comparing cfDNA testing with standard screening during the first trimester in routine prenatal populations.MethodsIn this prospective, multicenter, blinded study conducted at 35 international centers, we assigned pregnant women presenting for aneuploidy screening at 10 to 14 weeks of gestation to undergo both standard screening (with measurement of nuchal translucency and biochemical analytes) and cfDNA testing. Participants received the results of standard screening; the results of cfDNA testing were blinded. Determination of the birth outcome was based on diagnostic genetic testing or newborn examination. The primary outcome was the area under the receiver-operating-characteristic curve (AUC) for trisomy 21 (Down's syndrome) with cfDNA testing versus standard screening. We also evaluated cfDNA testing and standard screening to assess the risk of trisomies 18 and 13.ResultsOf 18,955 women who were enrolled, results from 15,841 were available for analysis. The mean maternal age was 30.7 years, and the mean gestational age at testing was 12.5 weeks. The AUC for trisomy 21 was 0.999 for cfDNA testing and 0.958 for standard screening (P=0.001). Trisomy 21 was detected in 38 of 38 women (100%; 95% confidence interval [CI], 90.7 to 100) in the cfDNA-testing group, as compared with 30 of 38 women (78.9%; 95% CI, 62.7 to 90.4) in the standard-screening group (P=0.008). False positive rates were 0.06% (95% CI, 0.03 to 0.11) in the cfDNA group and 5.4% (95% CI, 5.1 to 5.8) in the standard-screening group (P&lt;0.001). The positive predictive value for cfDNA testing was 80.9% (95% CI, 66.7 to 90.9), as compared with 3.4% (95% CI, 2.3 to 4.8) for standard screening (P&lt;0.001).ConclusionsIn this large, routine prenatal-screening population, cfDNA testing for trisomy 21 had higher sensitivity, a lower false positive rate, and higher positive predictive value than did standard screening with the measurement of nuchal translucency and biochemical analytes. (Funded by Ariosa Diagnostics and Perinatal Quality Foundation; NEXT ClinicalTrials.gov number, NCT01511458.)
    corecore