61 research outputs found

    Plains zebra (Equus quagga) behaviour in a restored population reveals seasonal resource limitations

    Get PDF
    A once abundant species, plains zebra (Equus quagga), is declining across much of sub-Saharan Africa. Reintroduction efforts at Majete Wildlife Reserve, Malawi, have resulted in rapid population increases, but little is known about how such populations resemble natural populations socially or behaviourally, and what those attributes may reveal about restoration success. Incorporating behavioural knowledge into conservation efforts is an important tool for managing the effects of habitat fragmentation and resource competition. The aim of this study was to quantify the daylight time budget of both family and bachelor bands of reintroduced plains zebra to determine if such behaviours resembled those found in natural populations, and to provide insights into seasonal behavioural patterns that could inform management strategies. We found that feeding occupied the largest percentage (mean = 41.8 % ± 2.36) of family band daylight time budgets, followed by resting (18.5 % ± 2.21), locomotion (10.9 % ± 1.05), vigilance (7.5 % ± 0.92), maintenance (2.7 % ± 0.92) and social behaviour (1.4 % ± 0.33). Bachelor bands spent the majority of their daylight time being vigilant (27.0 % ± 2.72), followed by locomotion (21.0 % ± 2.05), feeding (18.4 % ± 2.32), resting (15.4 % ± 2.85), maintenance (6.4 % ± 1.86) and social behaviour (2.4 % ± 0.68). The time budgets of zebra in this restored population are generally congruent with those reported in natural populations of plains zebra. Seasonal variation in time spent feeding and resting, locomotion, and change in body condition, however, suggest that dry season resources may negatively impact zebra in the miombo savannah woodlands. These results provide important insights into resource implications for zebra in an ecological system with many large ungulate species that compete for forage, and may assist managers with resource management strategies

    Behavior of feral horses in response to culling and GnRH immunocontraception

    Get PDF
    AbstractWildlife management actions can alter fundamental behaviors of individuals and groups, which may directly impact their life history parameters in unforeseen ways. This is especially true for highly social animals because changes in one individual's behavior can cascade throughout its social network. When resources to support populations of social animals are limited and populations become locally overabundant, managers are faced with the daunting challenge of decreasing population size without disrupting core behavioral processes. Increasingly, managers are turning to fertility control technologies to supplement culling in efforts to suppress population growth, but little is quantitatively known about how either of these management tools affects behavior. Gonadotropin releasing hormone (GnRH) is a small neuropeptide that performs an obligatory role in mammalian reproduction and has been formulated into the immunocontraceptive GonaCon-Bℱ. We investigated the influences of this vaccine on behavior of feral horses (Equus caballus) at Theodore Roosevelt National Park, North Dakota, USA, for a year preceding and a year following nonlethal culling and GnRH-vaccine treatment. We observed horses during the breeding season and found only minimal differences in time budget behaviors of free-ranging female feral horses treated with GnRH and those treated with saline. The differences observed were consistent with the metabolic demands of pregnancy and lactation. We observed similar social behaviors between treatment groups, reflecting limited reproductive behavior among control females due to high rates of pregnancy and suppressed reproductive behavior among treated females due to GnRH-inhibited ovarian activity. In the treatment year, band stallion age was the only supported factor influencing herding behavior (P<0.001), harem-tending behavior (P<0.001), and agonistic behavior (P=0.02). There was no difference between the mean body condition of control females (4.9 (95% CI=4.7–5.1)) and treated females (4.8 (95% CI=4.7–4.9)). Band fidelity among all females increased 25.7% in the year following vaccination and culling, despite the social perturbation associated with removal of conspecifics. Herding behavior by stallions decreased 50.7% following treatment and culling (P<0.001), while harem-tending behavior increased 195.0% (P<0.001). The amount of available forage influenced harem-tending, reproductive, and agonistic behavior in the year following culling and treatment (P<0.04). These changes reflected the expected nexus between a species with polygynous social structure and strong group fidelity and the large instantaneous change in population density and demography coincident with culling. Behavioral responses to such perturbation may be synergistic in reducing grazing pressure by decreasing energetically expensive competitive behaviors, but further investigation is needed to explicitly test this hypothesis

    Prey of reintroduced fishers and their habitat relationships in the Cascades T Range, Washington

    Get PDF
    Conservation and recovery of forest carnivores requires an understanding of their habitat requirements, as well as requirements of their prey. In much of the western United States, trapping and habitat loss led to extirpations of fishers (Pekania pennanti) by the mid-20th century, and reintroductions are ongoing to restore fishers to portions of their former range. Fisher recovery in Washington State has been limited by isolation from other populations, but other potentially important factors, such as diet of fishers in this region and prey availability, have not been thoroughly investigated. We collected hair samples from potential prey and fishers for stable isotope analysis to identify important prey items for fishers within a reintroduction area in southern Washington. We then estimated the abundance of prey species at 21 sites across a gradient of forest structural classes within the fisher reintroduction area, and assessed the effects of forest age and vegetation on the prey community using permutational multivariate analysis of variance and non-metric multidimensional scaling. Stable isotopes revealed that larger prey items, including snowshoe hares (Lepus americanus) and/or mountain beavers (Aplodontia rufa), were the most important prey item(s) for fishers in the southern Cascades. We found distinct but equally diverse prey communities in old-growth (unmanaged) and young (heavily managed) forest stands, with snowshoe hares and mountain beavers most common in young forests, while chipmunks (Neotamius spp.) and small mammals were more common in older forests. Our results suggest a discrepancy between the habitats where important fisher prey are most abundant and habitat requirements of fishers. Snowshoe hares and mountain beavers were most abundant in young forests, whereas fishers are associated with landscapes dominated by older forest stands or those that provide large woody structures, which fishers use for denning and resting. Our results add to growing evidence that forest landscape mosaics provide valuable habitat for fishers in the Pacific Northwest, suggesting that both mature and younger forest stands are important for fishers and fisher recovery

    Reimmunization increases contraceptive effectiveness of gonadotropin-releasing hormone vaccine (GonaCon-Equine) in freeranging horses (\u3ci\u3eEquus caballus\u3c/i\u3e): Limitations and side effects

    Get PDF
    Wildlife and humans are increasingly competing for resources worldwide, and a diverse, innovative, and effective set of management tools is needed. Controlling abundance of wildlife species that are simultaneously protected, abundant, competitive for resources, and in conflict with some stakeholders but beloved by others, is a daunting challenge. Free-ranging horses (Equus caballus) present such a conundrum and managers struggle for effective tools for regulating their abundance. Controlling reproduction of female horses presents a potential alternative. During 2009±2017, we determined the long-term effectiveness of GnRH vaccine (GonaCon-Equine) both as a single immunization and subsequent reimmunization on reproduction and side effects in free-ranging horses. At a scheduled management roundup in 2009, we randomly assigned 57 adult mares to either a GonaCon-Equine treatment group (n = 29) or a saline control group (n = 28). In a second roundup in 2013, we administered a booster vaccination to these same mares. We used annual ground observations to estimate foaling proportions, social behaviors, body condition, and injection site reactions. We found this vaccine to be safe for pregnant females and neonates, with no overt deleterious behavioral side effects during the breeding season. The proportion of treated mares that foaled following a single vaccination was lower than that for control mares for the second (P = 0.03) and third (P = 0.08) post-treatment foaling seasons but was similar (P = 0.67) to untreated mares for the fourth season, demonstrating reversibility of the primary vaccine treatment. After two vaccinations, however, the proportion of females giving birth was lower (

    A Radio Pulsar/X-ray Binary Link

    Get PDF
    Radio pulsars with millisecond spin periods are thought to have been spun up by transfer of matter and angular momentum from a low-mass companion star during an X-ray-emitting phase. The spin periods of the neutron stars in several such low-mass X-ray binary (LMXB) systems have been shown to be in the millisecond regime, but no radio pulsations have been detected. Here we report on detection and follow-up observations of a nearby radio millisecond pulsar (MSP) in a circular binary orbit with an optically identified companion star. Optical observations indicate that an accretion disk was present in this system within the last decade. Our optical data show no evidence that one exists today, suggesting that the radio MSP has turned on after a recent LMXB phase.Comment: published in Scienc

    GBT Discovery of Two Binary Millisecond Pulsars in the Globular Cluster M30

    Full text link
    We report the discovery of two binary millisecond pulsars in the core-collapsed globular cluster M30 using the Green Bank Telescope (GBT) at 20 cm. PSR J2140-2310A (M30A) is an eclipsing 11-ms pulsar in a 4-hr circular orbit and PSR J2140-23B (M30B) is a 13-ms pulsar in an as yet undetermined but most likely highly eccentric (e>0.5) and relativistic orbit. Timing observations of M30A with a 20-month baseline have provided precise determinations of the pulsar's position (within 4" of the optical centroid of the cluster), and spin and orbital parameters, which constrain the mass of the companion star to be m_2 >~ 0.1Msun. The position of M30A is coincident with a possible thermal X-ray point source found in archival Chandra data which is most likely due to emission from hot polar caps on the neutron star. In addition, there is a faint (V_555 ~ 23.8) star visible in archival HST F555W data that may be the companion to the pulsar. Eclipses of the pulsed radio emission from M30A by the ionized wind from the compact companion star show a frequency dependent duration (\propto\nu^{-\alpha} with \alpha ~ 0.4-0.5) and delay the pulse arrival times near eclipse ingress and egress by up to 2-3 ms. Future observations of M30 may allow both the measurement of post-Keplerian orbital parameters from M30B and the detection of new pulsars due to the effects of strong diffractive scintillation.Comment: 10 pages, 6 figures, Submitted to ApJ. This version includes many recommended modifications, an improved structure, a new author, and a completely redone optical analysi

    Ecological Consequences of Anomalies in Atmospheric Moisture and Snowpack

    Get PDF
    Although increased frequency of extreme‐weather events is one of the most secure predictions associated with contemporary climate change, effects of such events on distribution and abundance of climate‐sensitive species remain poorly understood. Montane ecosystems may be especially sensitive to extreme weather because of complex abiotic and biotic interactions that propagate from climate‐driven reductions in snowpack. Snowpack not only protects subnivean biotas from extreme cold, but also influences forage availability through timing of melt‐off and water availability. We related relative abundances of an alpine mammal, the American pika (Ochotona princeps), to measures of weather and snowpack dynamics over an 8‐yr period that included before and after a year of record‐low snowpack in Washington, USA. We sought to (1) quantify any change in pika abundance associated with the snowpack anomaly and (2) identify aspects of weather and snowpack that influenced abundance of pikas. Pikas showed a 1‐yr lag response to the snowpack anomaly and exhibited marked declines in abundance at elevations below 1,400 m simultaneous with increased abundances at higher elevations. Atmospheric moisture, indexed by vapor pressure deficit (VPD), was especially important, evidenced by strong support for the top‐ranked model that included the interaction of VPD with snowpack duration. Notably, our novel application of VPD from gridded climate data for analyses of animal abundances shows strong potential for improving species distribution models because VPD represents an important aspect of weather that influences the physiology and habitat of biota. Pikas were apparently affected by cold stress without snowpack at mid elevations, whereas changes to forage associated with snowpack and VPD were influential at high and low elevations. Our results reveal context dependency in pika responses to weather and illustrate how snow drought can lead to rapid change in the abundance of subnivean animals

    Eight New Millisecond Pulsars in NGC 6440 and NGC 6441

    Full text link
    Motivated by the recent discovery of 30 new millisecond pulsars in Terzan 5, made using the Green Bank Telescope's S-band receiver and the Pulsar Spigot spectrometer, we have set out to use the same observing system in a systematic search for pulsars in other globular clusters. Here we report on the discovery of five new pulsars in NGC 6440 and three in NGC 6441; each cluster previously had one known pulsar. Using the most recent distance estimates to these clusters, we conclude that there are as many potentially observable pulsars in NGC 6440 and NGC 6441 as in Terzan 5. We present timing solutions for all of the pulsars in these globular clusters. Four of the new discoveries are in binary systems; one of them, PSR J1748-2021B (NGC 6440B), has a wide (P_b = 20.5 d) and eccentric (e = 0.57) orbit. This allowed a measurement of its rate of advance of periastron: 0.00391(18) degrees per year. If due to the effects of general relativity, the total mass of this binary system is 2.92 +/- 0.20 solar masses (1 sigma), implying a median pulsar mass of 2.74 +/- 0.21 solar masses. There is a 1 % probability that the inclination is low enough that pulsar mass is below 2 solar masses, and 0.10 % probability that it is between 1.20 and 1.44 solar masses. If confirmed, this anomalously large mass would strongly constrain the equation of state for dense matter. The other highly eccentric binary, PSR J1750-37A, has e = 0.71, and periastron advance of 0.0055(3) degrees per year, implying a total system mass of 1.97 +/-0.15 solar masses and, along with the mass function, maximum and median pulsar masses of 1.65 and 1.26 solar masses respectively.Comment: Accepted for publication by the Astrophysical Journal. 14 pages in emulate format, 6 tables, 7 figure
    • 

    corecore