24 research outputs found

    Versatile Phase Transfer Method for the Efficient Surface Functionalization of Gold Nanoparticles: Towards Controlled Nanoparticle Dispersion in a Polymer Matrix

    Get PDF
    In electronic devices based on hybrid materials such as nonvolatile memory elements (NVMEs), it is essential to control precisely the dispersion of metallic nanoparticles (NPs) in an insulating polymer matrix such as polystyrene in order to control the functionality of the device. In this work the incorporation of AuNPs in polystyrene films is controlled by tuning the surface functionalization of the metallic nanoparticles via ligand exchange. Two ligands with different structures were used for functionalization: 1-decanethiol and thiol-terminated polystyrene. This paper presents a versatile method for the modification of gold nanoparticles (AuNPs) with thiol-terminated polystyrene ligands via phase transfer process. An organic colloid of AuNPs (5±1 nm diameter) is obtained by the phase transfer process (from water to toluene) that allows exchanging the ligand adsorbed on AuNPs surface (hydrophilic citrate/tannic acid to hydrophobic thiols). The stability, size distribution, and precise location of modified AuNPs in the polymer matrix are obtained from UV-Vis spectroscopy, dynamic light scattering (DLS), and electron tomography. TEM tomographic 3D imaging demonstrates that the modification of AuNPs with thiol-terminated polystyrene results in homogeneous particle distribution in the polystyrene matrix compared to 1-decanethiol modified AuNPs for which a vertical phase separation with a homogeneous layer of AuNPs located at the bottom of the polymer matrix was observed.This work was supported by FP7-NMP-2010-SMALL-4 Program (“Hybrid Organic/Inorganic Memory Elements for Integration of Electronic and Photonic Circuitry,” HYMEC), Project no. 263073. Eric Gonthier is acknowledged for technical support in the preparation of hybrid thin films. Scientific work was supported by the Polish Ministry of Science and Higher Education Funds for Science in 2011–2014 allocated for the cofunded international project

    The role of tannic acid and sodium citrate in the synthesis of silver nanoparticles

    Get PDF
    We describe herein the significance of a sodium citrate and tannic acid mixture in the synthesis of spherical silver nanoparticles (AgNPs). Monodisperse AgNPs were synthesized via reduction of silver nitrate using a mixture of two chemical agents: sodium citrate and tannic acid. The shape, size and size distribution of silver particles were determined by UV–Vis spectroscopy, dynamic light scattering (DLS) and scanning transmission electron microscopy (STEM). Special attention is given to understanding and experimentally confirming the exact role of the reagents (sodium citrate and tannic acid present in the reaction mixture) in AgNP synthesis. The oxidation and reduction potentials of silver, tannic acid and sodium citrate in their mixtures were determined using cyclic voltammetry. Possible structures of tannic acid and its adducts with citric acid were investigated in aqueous solution by performing computer simulations in conjunction with the semi-empirical PM7 method. The lowest energy structures found from the preliminary conformational search are shown, and the strength of the interaction between the two molecules was calculated. The compounds present on the surface of the AgNPs were identified using FT-IR spectroscopy, and the results are compared with the IR spectrum of tannic acid theoretically calculated using PM6 and PM7 methods. The obtained results clearly indicate that the combined use of sodium citrate and tannic acid produces monodisperse spherical AgNPs, as it allows control of the nucleation, growth and stabilization of the synthesis process.This work was supported by the Polish Ministry of Science and Higher Education within Research Grant No. NN507 350435 and by the National Science Centre Poland Grant No. 2014/13/B/NZ5/01356

    Core/Shell Ag/SnO<sub>2</sub> Nanowires for Visible Light Photocatalysis

    No full text
    This study presents core/shell Ag/SnO2 nanowires (Ag/SnO2NWs) as a new photocatalyst for the rapid degradation of organic compounds by the light from the visible range. AgNWs after coating with a SnO2 shell change optical properties and, due to red shift of the absorbance maxima of the longitudinal and transverse surface plasmon resonance (SPR), modes can be excited by the light from the visible light region. Rhodamine B and malachite green were respectively selected as a model organic dye and toxic one that are present in the environment to study the photodegradation process with a novel one-dimensional metal/semiconductor Ag/SnO2NWs photocatalyst. The degradation was investigated by studying time-dependent UV/Vis absorption of the dye solution, which showed a fast degradation process due to the presence of Ag/SnO2NWs photocatalyst. The rhodamine B and malachite green degraded after 90 and 40 min, respectively, under irradiation at the wavelength of 450 nm. The efficient photocatalytic process is attributed to two phenomenon surface plasmon resonance effects of AgNWs, which allowed light absorption from the visible range, and charge separations on the Ag core and SnO2 shell interface of the nanowires which prevents recombination of photogenerated electron-hole pairs. The presented properties of Ag/SnO2NWs can be used for designing efficient and fast photodegradation systems to remove organic pollutants under solar light without applying any external sources of irradiation

    The First Step in Standardizing an Artificial Aging Protocol for Dental Composites&mdash;Evaluation of Basic Protocols

    No full text
    The clinical performance of a dental restoration is strongly influenced by the complex and dynamically-changing oral environment; however, no standard procedure exists to evaluate this lifetime. This research provides an in-depth analysis of the effect of different aging procedures on the flexural strength (FS), diametral tensile strength (DTS) and hardness (HV) of selected dental materials (Resin F, Flow-Art and Arkon). Material structure was evaluated by scanning electron microscopy. It was found that each aging protocol had some influence on the tested properties, with continual erosion and degradation being observed. Greater mechanical degradation was observed for Resin F (neat resin) after the applied aging protocols, suggesting that a resin matrix is more susceptible for degradation. The most aggressive aging protocol was Protocol 5: 0.1 M NaOH, seven days, 60 &deg;C. Further studies on the effect of artificial aging on dental materials should include a study of the thermal and chemical factors. A standardized aging procedure is crucial for improving the resistance of dental resin composite to oral conditions and their clinical performance

    Lactoferrin-Functionalized Noble Metal Nanoparticles as New Antivirals for HSV-2 Infection

    No full text
    (1) Background: Lactoferrin has been recognized as a potent inhibitor of human herpetic viruses, such as herpes simplex type 1 (HSV-1) and 2 (HSV-2). In this work, we tested if silver and gold nanoparticles modified with lactoferrin (LF-Ag/AuNPs) can become novel microbicides with additional adjuvant properties to treat genital herpes infection. (2) Methods: The antiviral and cytotoxic activities of LF-Ag/AuNPs were tested in human skin HaCaT and vaginal VK-2-E6/E7 keratinocytes. Viral titers and immune responses after treatment with LF-Ag/AuNPs were tested in murine vaginal HSV-2 infection. (3) Results: LF-Ag/AuNPs inhibited attachment and entry of HSV-2 in human keratinocytes much better than lactoferrin. Furthermore, pretreatment with LF-AgNPs led to protection from infection. Infected mice treated intravaginally with LF-Ag/AuNPs showed lower virus titers in the vaginal tissues and spinal cords in comparison to treatment with lactoferrin. Following treatment, vaginal tissues showed a significant increase in CD8+/granzyme B + T cells, NK cells and dendritic cells in comparison to NaCl-treated group. LF-Ag/AuNPs-treated animals also showed significantly better expression of IFN-γ, CXCL9, CXCL10, and IL-1β in the vaginal tissues. (4) Conclusions: Our findings show that LF-Ag/AuNPs could become effective novel antiviral microbicides with immune-stimulant properties to be applied upon the mucosal tissues

    Silver Nanowires and Silanes in Hybrid Functionalization of Aramid Fabrics

    No full text
    New functionalization methods of meta- and para-aramid fabrics with silver nanowires (AgNWs) and two silanes (3-aminopropyltriethoxysilane (APTES)) and diethoxydimethylsilane (DEDMS) were developed: a one-step method (mixture) with AgNWs dispersed in the silane mixture and a two-step method (layer-by-layer) in which the silanes mixture was applied to the previously deposited AgNWs layer. The fabrics were pre-treated in a low-pressure air radio frequency (RF) plasma and subsequently coated with polydopamine. The modified fabrics acquired hydrophobic properties (contact angle &Theta;W of 112&ndash;125&deg;). The surface free energy for both modified fabrics was approximately 29 mJ/m2, while for reference, meta- and para-aramid fabrics have a free energy of 53 mJ/m2 and 40 mJ/m2, respectively. The electrical surface resistance (Rs) was on the order of 102 &Omega; and 104 &Omega; for the two-step and one-step method, respectively. The electrical volume resistance (Rv) for both modified fabrics was on the order of 102 &Omega;. After UV irradiation, the Rs did not change for the two-step method, and for the one-step method, it increased to the order of 1010 &Omega;. The specific strength values were higher by 71% and 63% for the meta-aramid fabric and by 102% and 110% for the para-aramid fabric for the two-step and one-step method, respectively, compared to the unmodified fabrics after UV radiation

    Gold Nanoparticles as Effective ion Traps in Poly(dimethylsiloxane) Cross-Linked by Metal-Ligand Coordination

    No full text
    At this time, the development of advanced elastic dielectric materials for use in organic devices, particularly in organic field-effect transistors, is of considerable interest to the scientific community. In the present work, flexible poly(dimethylsiloxane) (PDMS) specimens cross-linked by means of ZnCl2-bipyridine coordination with an addition of 0.001 wt. %, 0.0025 wt. %, 0.005 wt. %, 0.04 wt. %, 0.2 wt. %, and 0.4 wt. % of gold nanoparticles (AuNPs) were prepared in order to understand the effect of AuNPs on the electrical properties of the composite materials formed. The broadband dielectric spectroscopy measurements revealed one order of magnitude decrease in loss tangent, compared to the coordinated system, upon an introduction of 0.001 wt. % of AuNPs into the polymeric matrix. An introduction of AuNPs causes damping of conductivity within the low-temperature range investigated. These effects can be explained as a result of trapping the Cl&minus; counter ions by the nanoparticles. The study has shown that even a very low concentration of AuNPs (0.001 wt. %) still brings about effective trapping of Cl&minus; counter anions, therefore improving the dielectric properties of the investigated systems. The modification proposed reveals new perspectives for using AuNPs in polymers cross-linked by metal-ligand coordination systems

    Lactoferrin-Conjugated Nanoparticles as New Antivirals

    No full text
    Lactoferrin is an iron-binding glycoprotein with multiple functions in the body. Its activity against a broad spectrum of both DNA and RNA viruses as well as the ability to modulate immune responses have made it of interest in the pharmaceutical and food industries. The mechanisms of its antiviral activity include direct binding to the viruses or its receptors or the upregulation of antiviral responses by the immune system. Recently, much effort has been devoted to the use of nanotechnology in the development of new antivirals. In this review, we focus on describing the antiviral mechanisms of lactoferrin and the possible use of nanotechnology to construct safe and effective new antiviral drugs

    The Influence of Graphene Oxide Composition on Properties of Surface-Modified Metal Electrodes

    No full text
    The present paper describes the effect of the concentration of two graphene oxides (with different oxygen content) in the modifier layer on the electrochemical and structural properties of noble metal disk electrodes used as working electrodes in voltammetry. The chemistry of graphene oxides was tested using EDS, FTIR, UV&ndash;Vis spectroscopy, and combustion analysis. The structural properties of the obtained modifier layers were examined by means of scanning electron and atomic force microscopy. Cyclic voltammetry was employed for comparative electrochemical studies
    corecore