1,910 research outputs found
Is there a close association between "soils" and "vegetation"? : A case study from central western New South Wales
The assumption that ‘soils’ and ‘vegetation’ are closely associated was tested by describing soils and vegetation along a Travelling Stock Reserve west of Grenfell, New South Wales (lat 33° 55’S, long 147° 45’E). The transect was selected on the basis of (a) minimising the effects of non-soil factors (human interference, climate and relief) on vegetation and (b) the presence of various soil and vegetation types as indicated by previous mapping. ‘Soils’ were considered at three levels: soil landscapes (a broad mapping unit widely used in central western NSW), soil types (according to a range of classifications) and soil properties (depth, pH, etc.). ‘Vegetation’ was considered in three ways: vegetation type (in various classifications), density/floristic indices (density of woody species, abundance of native species, etc.) and presence/absence of individual species. Sites along the transect were grouped according to soil landscapes or soil types and compared to vegetation types or indices recorded at the sites. Various measures indicated low associations between vegetation types and soil landscapes or soil types. Except for infrequent occurrences of a soil type or landscape, any one soil type or landscape was commonly associated with a number of vegetation types and any one vegetation type was associated with a number of soil landscapes or soil types. However, significant associations between some vegetation indices, mainly density or numbers of woody species, and some soil landscapes and soil types were evident. Although many species were relatively ubiquitous, some groups of species that were restricted to one or two soil types were identified. Canonical Correspondence Analysis provided some suggestions as to which properties (e.g. texture) of these soils were associated with the presence of particular species
Neuropsychological, Behavioral, and Anatomical Evolution in Right Temporal Variant Frontotemporal Dementia: A Longitudinal Single Case Analysis
We examine longitudinal clinical and anatomical data for a patient with the right temporal variant of frontotemporal dementia. The patient received comprehensive clinical evaluations and structural MRI scans over three years. She presented with early behavioral deficits and ultimately developed semantic impairments consistent with the semantic variant of primary progressive aphasia. Imaging revealed early atrophy of the right temporal lobe, with later involvement of the left, and pathology confirmed bilateral temporal involvement. Findings support the view that right and left temporal variants reflect early asymmetry of atrophy that may become more bilateral over time, resulting in a mixed clinical picture
Recommended from our members
State and trait characteristics of anterior insula time-varying functional connectivity.
The human anterior insula (aINS) is a topographically organized brain region, in which ventral portions contribute to socio-emotional function through limbic and autonomic connections, whereas the dorsal aINS contributes to cognitive processes through frontal and parietal connections. Open questions remain, however, regarding how aINS connectivity varies over time. We implemented a novel approach combining seed-to-whole-brain sliding-window functional connectivity MRI and k-means clustering to assess time-varying functional connectivity of aINS subregions. We studied three independent large samples of healthy participants and longitudinal datasets to assess inter- and intra-subject stability, and related aINS time-varying functional connectivity profiles to dispositional empathy. We identified four robust aINS time-varying functional connectivity modes that displayed both "state" and "trait" characteristics: while modes featuring connectivity to sensory regions were modulated by eye closure, modes featuring connectivity to higher cognitive and emotional processing regions were stable over time and related to empathy measures
A machine-learning pipeline for real-time detection of gravitational waves from compact binary coalescences
The promise of multi-messenger astronomy relies on the rapid detection of
gravitational waves at very low latencies ((1\,s)) in order to
maximize the amount of time available for follow-up observations. In recent
years, neural-networks have demonstrated robust non-linear modeling
capabilities and millisecond-scale inference at a comparatively small
computational footprint, making them an attractive family of algorithms in this
context. However, integration of these algorithms into the gravitational-wave
astrophysics research ecosystem has proven non-trivial. Here, we present the
first fully machine learning-based pipeline for the detection of gravitational
waves from compact binary coalescences (CBCs) running in low-latency. We
demonstrate this pipeline to have a fraction of the latency of traditional
matched filtering search pipelines while achieving state-of-the-art sensitivity
to higher-mass stellar binary black holes
Dominant hemisphere lateralization of cortical parasympathetic control as revealed by frontotemporal dementia.
The brain continuously influences and perceives the physiological condition of the body. Related cortical representations have been proposed to shape emotional experience and guide behavior. Although previous studies have identified brain regions recruited during autonomic processing, neurological lesion studies have yet to delineate the regions critical for maintaining autonomic outflow. Even greater controversy surrounds hemispheric lateralization along the parasympathetic-sympathetic axis. The behavioral variant of frontotemporal dementia (bvFTD), featuring progressive and often asymmetric degeneration that includes the frontoinsular and cingulate cortices, provides a unique lesion model for elucidating brain structures that control autonomic tone. Here, we show that bvFTD is associated with reduced baseline cardiac vagal tone and that this reduction correlates with left-lateralized functional and structural frontoinsular and cingulate cortex deficits and with reduced agreeableness. Our results suggest that networked brain regions in the dominant hemisphere are critical for maintaining an adaptive level of baseline parasympathetic outflow
Recommended from our members
Basal parasympathetic deficits in C9orf72 hexanucleotide repeat expansion carriers relate to smaller frontoinsula and thalamus volume and lower empathy
Diminished basal parasympathetic nervous system activity is a feature of frontotemporal dementia that relates to left frontoinsula dysfunction and empathy impairment. Individuals with a pathogenic expansion of the hexanucleotide repeat in chromosome 9 open reading frame 72 (C9orf72), the most common genetic cause of frontotemporal dementia and amyotrophic lateral sclerosis, provide a unique opportunity to examine whether parasympathetic activity is disrupted in genetic forms of frontotemporal dementia and to investigate when parasympathetic deficits manifest in the pathophysiological cascade. We measured baseline respiratory sinus arrhythmia, a parasympathetic measure of heart rate variability, over two minutes in a sample of 102 participants that included 19 asymptomatic expansion carriers (C9+ asymp), 14 expansion carriers with mild cognitive impairment (C9+ MCI), 16 symptomatic expansion carriers with frontotemporal dementia (C9+ FTD), and 53 expansion-negative healthy controls (C9- HC) who also underwent structural magnetic resonance imaging. In follow-up analyses, we compared baseline respiratory sinus arrhythmia in the C9+ FTD group with an independent age-, sex-, and clinical severity-matched group of 26 people with sporadic behavioral variant frontotemporal dementia. The Frontotemporal Lobar Degeneration-modified Clinical Dementia Rating-Sum of Boxes score was used to quantify behavioral symptom severity, and informant ratings on the Interpersonal Reactivity Index provided measures of participants' current emotional (empathic concern) and cognitive (perspective-taking) empathy. Results indicated that the C9+ FTD group had lower baseline respiratory sinus arrhythmia than the C9+ MCI, C9+ asymp, and C9- HC groups, a deficit that was comparable to that of sporadic behavioral variant frontotemporal dementia. Linear regression analyses indicated that lower baseline respiratory sinus arrhythmia was associated with worse behavioral symptom severity and lower empathic concern and perspective-taking across the C9orf72 expansion carrier clinical spectrum. Whole-brain voxel-based morphometry analyses in participants with C9orf72 pathogenic expansions found that lower baseline respiratory sinus arrhythmia correlated with smaller gray matter volume in the left frontoinsula and bilateral thalamus, key structures that support parasympathetic function, and in the bilateral parietal lobes, occipital lobes, and cerebellum, regions that are also vulnerable in individuals with C9orf72 expansions. This study provides novel evidence that basal parasympathetic functioning is diminished in FTD due to C9orf72 expansions and suggests that baseline respiratory sinus arrhythmia may be a potential non-invasive biomarker that is sensitive to behavioral symptoms in the early stages of disease
Study of Gluon versus Quark Fragmentation in and Events at \sqrt{s}=10 GeV
Using data collected with the CLEO II detector at the Cornell Electron
Storage Ring, we determine the ratio R(chrg) for the mean charged multiplicity
observed in Upsilon(1S)->gggamma events, to the mean charged multiplicity
observed in e+e- -> qqbar gamma events. We find R(chrg)=1.04+/-0.02+/-0.05 for
jet-jet masses less than 7 GeV.Comment: 15 pages, postscript file also available through
http://w4.lns.cornell.edu/public/CLN
20 years of research on the Alcator C-Mod tokamak
The object of this review is to summarize the achievements of research on the Alcator C-Mod tokamak [Hutchinson et al., Phys. Plasmas 1, 1511 (1994) and Marmar, Fusion Sci. Technol. 51, 261 (2007)] and to place that research in the context of the quest for practical fusion energy. C-Mod is a compact, high-field tokamak, whose unique design and operating parameters have produced a wealth of new and important results since it began operation in 1993, contributing data that extends tests of critical physical models into new parameter ranges and into new regimes. Using only high-power radio frequency (RF) waves for heating and current drive with innovative launching structures, C-Mod operates routinely at reactor level power densities and achieves plasma pressures higher than any other toroidal confinement device. C-Mod spearheaded the development of the vertical-target divertor and has always operated with high-Z metal plasma facing components—approaches subsequently adopted for ITER. C-Mod has made ground-breaking discoveries in divertor physics and plasma-material interactions at reactor-like power and particle fluxes and elucidated the critical role of cross-field transport in divertor operation, edge flows and the tokamak density limit. C-Mod developed the I-mode and the Enhanced Dα H-mode regimes, which have high performance without large edge localized modes and with pedestal transport self-regulated by short-wavelength electromagnetic waves. C-Mod has carried out pioneering studies of intrinsic rotation and demonstrated that self-generated flow shear can be strong enough in some cases to significantly modify transport. C-Mod made the first quantitative link between the pedestal temperature and the H-mode's performance, showing that the observed self-similar temperature profiles were consistent with critical-gradient-length theories and followed up with quantitative tests of nonlinear gyrokinetic models. RF research highlights include direct experimental observation of ion cyclotron range of frequency (ICRF) mode-conversion, ICRF flow drive, demonstration of lower-hybrid current drive at ITER-like densities and fields and, using a set of novel diagnostics, extensive validation of advanced RF codes. Disruption studies on C-Mod provided the first observation of non-axisymmetric halo currents and non-axisymmetric radiation in mitigated disruptions. A summary of important achievements and discoveries are included.United States. Dept. of Energy (Cooperative Agreement DE-FC02-99ER54512)United States. Dept. of Energy (Cooperative Agreement DE-FG03-94ER-54241)United States. Dept. of Energy (Cooperative Agreement DE-AC02-78ET- 51013)United States. Dept. of Energy (Cooperative Agreement DE-AC02-09CH11466)United States. Dept. of Energy (Cooperative Agreement DE-FG02-95ER54309)United States. Dept. of Energy (Cooperative Agreement DE-AC02-05CH11231)United States. Dept. of Energy (Cooperative Agreement DE-AC52-07NA27344)United States. Dept. of Energy (Cooperative Agreement DE-FG02- 97ER54392)United States. Dept. of Energy (Cooperative Agreement DE-SC00-02060
Location of residence associated with the likelihood of patient visit to the preoperative assessment clinic
BACKGROUND: Outpatient preoperative assessment clinics were developed to provide an efficient assessment of surgical patients prior to surgery, and have demonstrated benefits to patients and the health care system. However, the centralization of preoperative assessment clinics may introduce geographical barriers to utilization that are dependent on where a patient lives with respect to the location of the preoperative assessment clinic. METHODS: The association between geographical distance from a patient's place of residence to the preoperative assessment clinic, and the likelihood of a patient visit to the clinic prior to surgery, was assessed for all patients undergoing surgery at a tertiary health care centre in a major Canadian city. The odds of attending the preoperative clinic were adjusted for patient characteristics and clinical factors. RESULTS: Patients were less likely to visit the preoperative assessment clinic prior to surgery as distance from the patient's place of residence to the clinic increased (adjusted OR = 0.52, 95% CI 0.44–0.63 for distances between 50–100 km, and OR = 0.26, 95% CI 0.21–0.31 for distances greater than 250 km). This 'distance decay' effect was remarkable for all surgical specialties. CONCLUSION: The present study demonstrates that the likelihood of a patient visiting the preoperative assessment clinic appears to depend on the geographical location of patients' residences. Patients who live closest to the clinic tend to be seen more often than patients who live in rural and remote areas. This observation may have implications for achieving the goals of equitable access, and optimal patient care and resource utilization in a single universal insurer health care system
- …