1,007 research outputs found

    Topology and Polarisation of Subbeams Associated With Pulsar 0943+10's ``Drifting''-Subpulse Emission: I. Analysis of Arecibo 430- and 111-MHz Observations

    Full text link
    The ``drifting'' subpulses exhibited by some radio pulsars have fascinated both observers and theorists for 30 years, and have been widely regarded as one of the most critical and potentially insightful aspects of their emission. Here, we report on detailed studies of pulsar B0943+10, whose nearly coherent sequences of ``drifting'' subpulses have permitted us to identify their origin as a system of subbeams that appear to circulate around the star's magnetic axis. We introduce several new techniques of analysis, and we find that both the primary and secondary features in the star's fluctuation spectra are aliases of their actual values. We have also developed a method of tracing the underlying pattern responsible for the observed sequences, using a ``cartographic'' transform and its inverse, permitting us to study the characteristics of the polar-cap emission ``map'' and to confirm that such a ``map'' in turn represents the observed sequence. We apply these techniques to the study of three different Arecibo observations. The ``B''-mode sequences are consistent in revealing that the emission pattern consists of 20 subbeams, which rotate around the magnetic axis in about 37 periods or 41 seconds. Even in the ``Q'' mode sequence, we find evidence of a compatible circulation time. The similarity of the subbeam patterns at different radio frequencies strongly suggests that the radiation is produced within a set of columns, which extend from close to the stellar surface up though the emission region and reflect some manner of a ``seeding''phenomenon at their base. The subbeam emission is then tied neither to the stellar surface nor to the field.Comment: 25 pages with 26 figures; in press in MNRA

    Circulating Subbeam Systems and the Physics of Pulsar Emission

    Full text link
    The purpose of this paper is to suggest how detailed single-pulse observations of ``slow'' radio pulsars may be utilized to construct an empirical model for their emission. It links the observational synthesis developed in a series of papers by Rankin starting in the 1980s to the more recent empirical feedback model of Wright (2003a) by regarding the entire pulsar magnetosphere as a non-steady, non-linear interactive system with a natural built-in delay. It is argued that the enhanced role of the outer gap in such a system indicates an evolutionary link to younger pulsars, in which this region is thought to be highly active, and that pulsar magnetospheres should no longer be seen as being ``driven'' by events on the neutron star's polar cap, but as having more in common with planetary magnetospheres and auroral phenomena.Comment: 15 pages, 3 figure

    No Pulsar Left Behind. I. Timing, Pulse-sequence Polarimetry, and Emission Morphology for 12 pulsars

    Full text link
    In this paper we study a set of twelve pulsars that previously had not been characterized. Our timing shows that eleven of them are "normal" isolated pulsars, with rotation periods between 0.22 and 2.65 s, characteristic ages between 0.25 Myr and 0.63 Gyr, and estimated magnetic fields ranging from 0.05 to 3.8x 10^{12} G. The youngest pulsar in our sample, PSR~J0627+0706, is located near the Monoceros supernova remnant (SNR G205.5+0.5), but it is not the pulsar most likely to be associated with it. We also confirmed the existence of a candidate from an early Arecibo survey, PSR~J2053+1718, its subsequent timing and polarimetry are also presented here. It is an isolated pulsar with a spin period of 119 ms, a relatively small magnetic field of 5.8x10^9 G and a characteristic age of 6.7 Gyr; this suggests the pulsar was mildly recycled by accretion from a companion star which became unbound when that companion became a supernova. We report the results of single-pulse and average Arecibo polarimetry at both 327 and 1400 MHz aimed at understanding the basic emission properties and beaming geometry of these pulsars. Three of them (PSRs~J0943+2253, J1935+1159 and J2050+1259) have strong nulls and sporadic radio emission, several others exhibit interpulses (PSRs J0627+0706 and J0927+2345) and one shows regular drifting subpulses (J1404+1159).Comment: 17 pages, 14 figure
    corecore