8,787 research outputs found

    The uncoupling limit of identical Hopf bifurcations with an application to perceptual bistability

    Get PDF
    We study the dynamics arising when two identical oscillators are coupled near a Hopf bifurcation where we assume a parameter ϵ\epsilon uncouples the system at ϵ=0\epsilon=0. Using a normal form for N=2N=2 identical systems undergoing Hopf bifurcation, we explore the dynamical properties. Matching the normal form coefficients to a coupled Wilson-Cowan oscillator network gives an understanding of different types of behaviour that arise in a model of perceptual bistability. Notably, we find bistability between in-phase and anti-phase solutions that demonstrates the feasibility for synchronisation to act as the mechanism by which periodic inputs can be segregated (rather than via strong inhibitory coupling, as in existing models). Using numerical continuation we confirm our theoretical analysis for small coupling strength and explore the bifurcation diagrams for large coupling strength, where the normal form approximation breaks down

    Is pulsar B0656+14 a very nearby RRAT source?

    Get PDF
    The recently discovered RRAT sources are characterized by very bright radio bursts which, while being periodically related, occur infrequently. We find bursts with the same characteristics for the known pulsar B0656+14. These bursts represent pulses from the bright end of an extended smooth pulse-energy distribution and are shown to be unlike giant pulses, giant micropulses or the pulses of normal pulsars. The extreme peak-fluxes of the brightest of these pulses indicates that PSR B0656+14, were it not so near, could only have been discovered as an RRAT source. Longer observations of the RRATs may reveal that they, like PSR B0656+14, emit weaker emission in addition to the bursts.Comment: 4 pages, 4 figures, accepted by ApJ

    Stokes tomography of radio pulsar magnetospheres. I. Linear polarization

    Full text link
    Polarimetric studies of pulsar radio emission traditionally concentrate on how the Stokes vector (I, Q, U, V) varies with pulse longitude, with special emphasis on the position angle (PA) swing of the linearly polarized component. The interpretation of the PA swing in terms of the rotating vector model is limited by the assumption of an axisymmetric magnetic field and the degeneracy of the output with respect to the orientation and magnetic geometry of the pulsar; different combinations of the latter two properties can produce similar PA swings. This paper introduces Stokes phase portraits as a supplementary diagnostic tool with which the orientation and magnetic geometry can be inferred more accurately. The Stokes phase portraits feature unique patterns in the I-Q, I-U, and Q-U planes, whose shapes depend sensitively on the magnetic geometry, inclination angle, beam and polarization patterns, and emission altitude. We construct look-up tables of Stokes phase portraits and PA swings for pure and current-modified dipole fields, filled core and hollow cone beams, and two empirical linear polarization models, L/I = \cos \theta_0 and L/I = \sin \theta_0, where \theta_0 is the colatitude of the emission point. We compare our look-up tables to the measured phase portraits of 24 pulsars in the European Pulsar Network online database. We find evidence in 60% of the objects that the radio emission region may depart significantly from low altitudes, even when the PA swing is S-shaped and/or the pulse-width-period relation is well satisfied. On the other hand, the data are explained adequately if the emission altitude exceeds ~10% of the light cylinder radius. We conclude that Stokes phase portraits should be analysed concurrently with the PA swing and pulse profiles in future when interpreting radio pulsar polarization data.Comment: 60 pages, 58 figures, submitted to MNRAS, accepted 13 Oct 201

    Prolonged FGF signaling is necessary for lung and liver induction in Xenopus

    Get PDF
    BACKGROUND: FGF signaling plays numerous roles during organogenesis of the embryonic gut tube. Mouse explant studies suggest that different thresholds of FGF signaling from the cardiogenic mesoderm induce lung, liver, and pancreas lineages from the ventral foregut progenitor cells. The mechanisms that regulate FGF dose in vivo are unknown. Here we use Xenopus embryos to examine the hypothesis that a prolonged duration of FGF signaling from the mesoderm is required to induce foregut organs. RESULTS: We show that both mesoderm and FGF signaling are required for liver and lung development in Xenopus; formally demonstrating that this important step in organ induction is conserved with other vertebrate species. Prolonged contact with the mesoderm and persistent FGF signaling through both MEK and PI3K over an extended period of time are required for liver and lung specification. Inhibition of FGF signaling results in reduced liver and lung development, with a modest expansion of the pancreas/duodenum progenitor domain. Hyper-activation of FGF signaling has the opposite effect expanding liver and lung gene expression and repressing pancreatic markers. We show that FGF signaling is cell autonomously required in the endoderm and that a dominant negative FGF receptor decreases the ability of ventral foregut progenitor cells to contribute to the lung and liver buds. CONCLUSIONS: These results suggest that the liver and lungs are specified at progressively later times in development requiring mesoderm contact for different lengths of time. Our data suggest that this is achieved at least in part through prolonged FGF signaling. In addition to providing a foundation for further mechanistic studies on foregut organogenesis using the experimental advantages of the Xenopus system, these data have implications for the directed differentiation of stem cells into foregut lineages

    Coherently Dedispersed Polarimetry of Millisecond Pulsars

    Full text link
    We present a large sample of high-precision, coherently-dedispersed polarization profiles of millisecond pulsars (MSPs) at frequencies between 410 and 1414 MHz. These data include the first polarimetric observations of several of the pulsars, and the first low-frequency polarization profiles for others. Our observations support previous suggestions that the pulse shapes and polarimetry of MSPs are more complex than those of their slower relatives. An immediate conclusion is that polarimetry-based classification schemes proposed for young pulsars are of only limited use when applied to millisecond pulsars.Comment: 28 pages, 10 figures. Text matches version that appeared in ApJS. Full paper with high-resolution figures available at ftp://ftp.jb.man.ac.uk/pub/psr/papers/msppolpton.ps.g

    A Strong Upper Limit on the Pulsed Radio Luminosity of the Compact Object 1RXS J141256.0+792204

    Full text link
    The ROSAT X-ray source 1RXS J141256.0+792204 has recently been identified as a likely compact object whose properties suggest it could be a very nearby radio millisecond pulsar at d = 80 - 260pc. We investigated this hypothesis by searching for radio pulsations using the Westerbork Synthesis Radio Telescope. We observed 1RXS J141256.0+792204 at 385 and 1380MHz, recording at high time and frequency resolution in order to maintain sensitivity to millisecond pulsations. These data were searched both for dispersed single pulses and using Fourier techniques sensitive to constant and orbitally modulated periodicities. No radio pulsations were detected in these observations, resulting in pulsed radio luminosity limits of L_400 ~ 0.3 (d/250pc)^2 mJy kpc^2 and L_1400 ~ 0.03 (d/250pc)^2 mJy kpc^2 at 400 and 1400MHz respectively. The lack of detectable radio pulsations from 1RXS J141256.0+792204 brings into question its identification as a nearby radio pulsar, though, because the pulsar could be beamed away from us, this hypothesis cannot be strictly ruled out.Comment: To appear in A&A. 3 page
    • …
    corecore