295 research outputs found

    Edge states, spin transport and impurity induced local density of states in spin-orbit coupled graphene

    Full text link
    We study graphene which has both spin-orbit coupling (SOC), taken to be of the Kane-Mele form, and a Zeeman field induced due to proximity to a ferromagnetic material. We show that a zigzag interface of graphene having SOC with its pristine counterpart hosts robust chiral edge modes in spite of the gapless nature of the pristine graphene; such modes do not occur for armchair interfaces. Next we study the change in the local density of states (LDOS) due to the presence of an impurity in graphene with SOC and Zeeman field, and demonstrate that the Fourier transform of the LDOS close to the Dirac points can act as a measure of the strength of the spin-orbit coupling; in addition, for a specific distribution of impurity atoms, the LDOS is controlled by a destructive interference effect of graphene electrons which is a direct consequence of their Dirac nature. Finally, we study transport across junctions which separates spin-orbit coupled graphene with Kane-Mele and Rashba terms from pristine graphene both in the presence and absence of a Zeeman field. We demonstrate that such junctions are generally spin active, namely, they can rotate the spin so that an incident electron which is spin polarized along some direction has a finite probability of being transmitted with the opposite spin. This leads to a finite, electrically controllable, spin current in such graphene junctions. We discuss possible experiments which can probe our theoretical predictions.Comment: 21 pages, 19 figures; added some discussion and references; this is the final published versio

    Designing bound states in a band as a model for a quantum network

    Get PDF
    We provide a model of a one dimensional quantum network, in the framework of a lattice using Von Neumann and Wigner's idea of bound states in a continuum. The localized states acting as qubits are created by a controlled deformation of a periodic potential. These wave functions lie at the band edges and are defects in a lattice. We propose that these defect states, with atoms trapped in them, can be realized in an optical lattice and can act as a model for a quantum network.Comment: 8 pages, 10 figure

    Growth mechanism of nanocrystals in solution: ZnO, a case study

    Get PDF
    We investigate the mechanism of growth of nanocrystals from solution using the case of ZnO. Spanning a wide range of values of the parameters, such as the temperature and the reactant concentration, that control the growth, our results establish a qualitative departure from the widely accepted diffusion controlled coarsening (Ostwald ripening) process quantified in terms of the Lifshitz-Slyozov-Wagner theory. Further, we show that these experimental observations can be qualitatively and quantitatively understood within a growth mechanism that is intermediate between the two well-defined limits of diffusion control and kinetic control.Comment: 10 pages, 4 figure
    corecore