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Designing bound states in a band as a model for a quantum network
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We provide a model of a one dimensional quantum network, in the framework of a lattice using
Von Neumann and Wigner’s idea of bound states in a continuum. The localized states acting as
qubits are created by a controlled deformation of a periodic potential. These wave functions lie at
the band edges and are defects in a lattice. We propose that these defect states, with atoms trapped
in them, can be realized in an optical lattice and can act as a model for a quantum network.
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I. INTRODUCTION

In classical computation, bits 0 and 1 are used to represent data. Logic gates are employed for computation and
data manipulation. At present, considerable work is being done to develop quantum computers. It is expected that
they will increase the speed and efficiency of computation [1] compared to a classical computer. The basic building
blocks in quantum computing are known as quantum bits or qubits and are represented by the eigenstates of a system.
For example, qubits are described by the up and down states of spin-half particles, represented by |0〉 and |1〉. The
unitary operators play the role of logic gates and we can perform various operations similar to classical computing.
The major areas of interest in the field of quantum computation are the development of models, having states which
can be used as qubits and the construction of unitary operators to manipulate these qubits. It is important that these
states should be well isolated from the outside environment to avoid environmental decoherence.
In this paper, we propose a theoretical model for preparing qubits i.e., |0 > and |1 >, using periodic potentials.

These potentials are characterized by a band spectrum, which contains bands of allowed energies interspersed with
forbidden energy gaps. The wave functions are not integrable and they extend to spatial infinity. Hence, they cannot
be envisaged as qubits. We will explicitly demonstrate that a periodic potential can be appropriately deformed to
accommodate bound states in its band spectrum. This deformation can be treated as the perturbation of the original
potential. The effect of which is the creation of the localized states which can be perceived as defects in the lattice.
Atoms trapped in these defects can be used to describe qubits. This treatment of the trapped atoms in optical
lattices, as qubits in a quantum network, is similar to the quantum computation model proposed by Angelakis et.
al.,[2]. Here, they have used photonic crystals to confine photons in the defect states created inside the band gap,
to represent qubits. In quantum networking atoms are trapped in the nodes and are used to store information. We
propose that an array of such localized states in the deformed optical lattice, with atoms trapped in them, can be
used as a quantum network [ 3, 4].
At present, various optical lattices are routinely realized in the laboratories and atoms can be trapped in a potential

well with relative ease. For our model, we consider one of the well - known family of periodic potentials namely, the
Lamé potentials [5, 6],

V (x) = j(j + 1)m sn 2(x,m). (1)

The function sn (x,m) is the Jacobi elliptic function [7, 8] with elliptic modulus 0 < m < 1. These potentials are
exactly solvable for integer values of j and for a given j there are (2j + 1) band-edges. Both the form of these
band-edge solutions and explicit solutions for smaller values of j are given in [6, 9, 10]. The Lamé potential has been
proposed as a model for quasi 1 - d confinement of Bose - Einstein condensates (BEC) in a standing light wave [12].
Possible application of BECs for quantum computation are currently being explored and the bound states created by
deforming a potential like the Lamé potential may have useful implications.
The method used to construct these bound states is the same as that used by Pappademos et. al., to construct

quantum mechanical bound states in a classical continuous energy spectrum. Such states were first discovered by
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Von Neumann and Wigner [13] and many such examples were found later [14 - 16]. It became clear that such states
arose due to the delicate interplay between the rate at which the oscillatory potential falls off and the time taken by
the various maxima of the potential to interact and create a bound state. Existence of such states was reported by
Capasso et. al., in semiconductor hetrostructures [17].
SUSYQM [18, 19] was applied to generate bound states in the continuum of the energy spectrum for a spherically

symmetric potential [20, 21]. We apply the same technique to periodic potentials and construct bound states in their
band spectrum, with the same energies as the band-edge energies. The solutions thus obtained are located at the
band-edges and not inside the forbidden energy gap as discussed in [2, 22, 23].
In the next section, we give an overview of SUSYQM and briefly describe the steps involved in constructing a

bound state in the continuum (BIC). In section III, we use the same procedure to construct bound states for the
Lamé potential. In the last section, we present our conclusions.

II. SUPERSYMMETRIC QUANTUM MECHANICS

For a given 1 - d potential V (x) with eigenfunctions un(x) and eigenvalues En (n = 0, 1, 2...), we can generate a new

family of potentials Ṽ (x;λ), isospectral to V (x). The parameter λ is used to label the potentials in the isospectral
family and takes values lying in the range λ > 0 and λ < −1. Setting ~ = 2m = 1 we can write the superpotential as,

W (x) = −
u′
0

u0
. (2)

The original potential V (x) can be expressed in terms of W (x) as,

V (x) =W 2(x)−W ′(x). (3)

Its isospectral partner Ṽ (x;λ) is given by

Ṽ (x;λ) =W 2(x) +W ′(x). (4)

Let ũn(x) be the eigenfunctions of Ṽ (x;λ) (n = 1, 2...). We have ũn(x) = Aun(x) where A = d/dx +W (x). (Hence,
A† = −d/dx+W (x)). Note that ũ0(x), the ground state cannot be obtained in this manner since Au0(x) = 0. Thus,

Ṽ (x;λ) is isospectral to V (x), except that its spectrum does not contain ũ0(x). Hence, to introduce the ground state

into its spectrum and form a complete set of eigenstates, we need to find the most general superpotential W̃ (x), so
that

Ṽ (x;λ) = W̃ 2(x) + W̃ ′(x). (5)

We can now show that

W̃ (x) =W (x) +
d

dx
ln(I0(x) + λ) (6)

where

I0 =

∫
x

0

u2
0
(y)dy. (7)

Thus, in this process of reinstating the ground state, we obtain the expression for the potential Ṽ (x;λ) in terms of I0
as,

Ṽ (x;λ) = V (x)− 2[ln(I0 + λ)]′′ = V (x) −
4u0u

′
0

I0 + λ
+

2u4
0

(I0 + λ)2
. (8)

Note that Ṽ (x;λ) is V (x) plus a perturbative term and λ can be take as the perturbative parameter. The perturbed
potential is isospectral to the old potential and its eigenstates are given below in Eqs. (9) and (10).
In standard SUSYQM, isospectral families of potentials which allow only bound states have been constructed,

and u0(x) was taken to be the ground state. In [21], the above method was generalized to the case where the
potentials have a continuous energy spectrum and u0(x) has been taken to be any non-singular eigenstate of V (x).
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This procedure was used to construct BIC for the spherically symmetric potential and the results were stated as a
theorem. We refer the reader to [20] and the references therein for further details and merely reproduce the result here.

Let u0(x) and u1(x) be any two nonsingular solutions of the Schrödinger equation for the potential V(x) correspond-

ing to arbitrarily selected energies E0 and E1 respectively. Construct a new potential Ṽ (x;λ) as prescribed by Eq. (8).
Then, the two functions

ũ0(x) =
u0

I0 + λ
(9)

and

ũ1(x) = (E1 − E0)u1(x) + ũ0(x)Wr(u0(x), u1(x)) (10)

are solutions of the Schrödinger equation for the new potential Ṽ (x;λ), corresponding to the same energies E0 and
E1. Here Wr(u0(x), u1(x)) is the Wronskian.
Note that the original potential V (x) had no integrable solutions but the new potential has one square-integrable

solution ũ0(x), with the rest being non - integrable. The creation of the bound state can be elucidated by the fact
that I0 in Eq. (7) diverges owing to the non-integrability of u0. Hence, as I0 → ∞, ũ0(x) → 0, resulting in a
square-integrable wave function in the continuum.
We can create another bound state by using the non-normalizable state ũ1(x) in place of u0(x) and deforming

Ṽ (x;λ), using the same procedure described above. We then obtain a potential ˜̃V (x;λ, λ1), isospectral to V (x) which
has two bound states in the continuous spectrum with energies E0 and E1. The parameter λ1 is a real number lying
in the range λ1 > 0 and λ1 < −1.

The expressions for the new potential ˜̃V (x) and the two square-integrable states ˜̃u0(x) and ˜̃u1(x), with energies E0

and E1 respectively are given by

˜̃V (x) = Ṽ (x)− 2[ln(I1 + λ1)]
′′ = Ṽ (x) −

4ũ1ũ
′
1

I1 + λ1
+

2ũ41
(I1 + λ1)2

, (11)

˜̃u0(x) = (E0 − E1)ũ0(x) + ˜̃u1(x)Wr(ũ1(x), ũ0(x)) (12)

and

˜̃u1(x) =
ũ1

I1 + λ1
(13)

where

I1 =

∫
x

0

ũ2
1
(y)dy (14)

and Wr(ũ1(x), ũ0(x)) is the Wronskian. In the next section, we apply the above technique to periodic potentials on
the half-line and construct bound states in the band spectrum. For this purpose, we use the band-edge wave functions
to deform the original periodic potential. The bound states thus created have the same band-edge energies.

III. THE LAMÉ POTENTIAL

The Lamé potential (Eq. (1)) with j = 2 is,

V (x) = 6msn 2(x,m). (15)

It has two bands and a continuum. The expressions for the five band - edge wave functions and energies are given
below [6] [ 9, 10] [27] with ψ0(x) and ψ1(x) representing the lower and upper band - edge wave functions of the first
band and so on. We have

ψ0(x) = 3m+ 3− δ − 3msn 2(x,m) , E0 = 2δ − 2m− 2, (16)

ψ1(x) = cn (x,m) dn (x,m) , E1 = m+ 1, (17)

ψ2(x) = dn (x,m) sn (x,m) , E2 = 4m+ 1, (18)

ψ3(x) = cn (x,m) sn (x,m) , E3 = m+ 4, (19)

ψ4(x) = 3m+ 3− 3δ − 3msn 2(x,m) , E4 = 2δ + 2m+ 2, (20)
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where, the functions cn (x,m) and dn (x,m) are the Jacobi elliptic functions with modulus parameter m. For con-
structing the bound states, we examine only the half-line problem and hence consider the band-edge wave functions
which vanish at the origin. In the above given expressions, only Eqs. (18) and (19) which represent the lower and
upper band edge wave functions of the second band, satisfy this condition, since sn (0,m) = 0. We follow the steps
described in the previous section and construct two bound states with energies E2 and E3. The entire procedure is
done numerically and we give the plots of the deformed potential and bound states thus obtained, in the sequel.
We deform the potential given in Eq. (15), using the expression for ψ2(x) in Eq. (18), to obtain a one-parameter

bound state solution which depends on the parameter λ . For this purpose, we first plot I0 versus x in Fig. 1.
As expected I0 turns out to be a diverging integral. Using I0 and Eqs. (8), (9) and (10), we plot the deformed

potential Ṽ (x) and the deformed wave functions ψ̃2(x) and ψ̃3(x). These are give in Figs. 2, 3 and 4 respectively.
For comparison, the original potential and wave functions are plotted in dotted line.
It is clear from Figs. 3 and 4 that ψ̃2(x) is a normalizable state and ψ̃3(x) is not normalizable. Thus, with this

deformation we have obtained only one bound state. In order to construct two bound states, we deform Ṽ (x) with

ψ̃3(x) using Eqs (11) - (14). Plots of I1,
˜̃V (x),

˜̃
ψ2(x) and

˜̃
ψ3(x) versus x are given in Figs. 5, 6, 7 and 8 respectively.

From Figs.7 and 8, it is clear that both
˜̃
ψ2(x) and

˜̃
ψ3(x) are integrable. These states have energies E2 and E3 and

the potential ˜̃V (x) is isospectral to the original potential V (x). The deformed potential and the bound states depend
on the parameters λ and λ1 and as we increases their values, the deformed states and the potential tend towards the
corresponding original states and the potential. In Figs. 9 and 10, we give the plots of the deformed wave functions
˜̃
ψ2(x) and

˜̃
ψ3(x), for two different values of λ and λ1. (Without loss of generality we have set λ = λ1 = 1 and

λ = λ1 = 10 in these figures).

IV. CONCLUSIONS

We have shown that we can construct bound states in the band spectrum of a periodic potential using SUSYQM.
It is clear from the above procedure that we can create a class of bound states by successively deforming the potential
V (x), provided there exist band-edge wave functions, of the original potential, which satisfy the boundary condition
ψn(0) = 0.
We can use these square-integrable states as qubits in quantum computation. The localized states with atoms

trapped in them can be treated as the qubits |0〉 and |1〉. If it is possible to get n such defect states in the optical
lattice we have an array of qubits which can be used as an optical network [4]. The perturbative parameters can
be used to adjust the overlap of these trapped atoms and also to control the deformation of the periodic potential.
Moreover, these localized states are in the band and hence, protected from the external influences. Since optical
lattices are easy to create and manipulate in the laboratory, this can be a useful model for quantum networking [24,
25, 26].
In conclusion, we have shown that it is possible to deform a periodic potential to accommodate localized states at

the band edges. It is proposed that by trapping atoms in these states we can construct qubits and an array of n such
qubits can be used as a quantum network.
Acknowledgments : S. S. R. thanks S. Lakshmi Bala for useful comments and acknowledges support from the

Department of Science and Technology, India, under project No. SP/S2/K-14/2000.
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FIG. 1: Plot of the diverging integral I0 versus x.
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FIG. 2: Deformed potential Ṽ (x) versus x, with λ = 1. The dotted line represents the original potential V (x).
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FIG. 3: Deformed wave function ψ̃2(x) versus x, with λ = 1. The dotted line represents the original band-edge wave function
ψ2(x).
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FIG. 4: Deformed wave function ψ̃3(x) versus x, with λ = 1. The dotted line represents the original band-edge wave function
ψ3(x).
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FIG. 5: Plot of the diverging integral I1 versus x.
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FIG. 6: Deformed potential ˜̃
V (x) versus x, with λ1 = 1. The dotted line represents the original potential V (x).
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FIG. 7: Deformed wave function ˜̃
ψ2(x) versus x, with λ1 = 1. The dotted line represents the original band-edge wave function

ψ2(x).
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FIG. 8: Deformed wave function
˜̃
ψ3(x) versus x, with λ1 = 1. The dotted line represents the original band-edge wave function

ψ3(x).
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FIG. 9: Deformed wave function
˜̃
ψ2(x) for λ1 = λ = 1 (dotted line) and for λ1 = λ = 10 (thick line).
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FIG. 10: Deformed wave function ˜̃
ψ3(x) for λ1 = λ = 1 (dotted line) and for λ1 = λ = 10 (thick line).
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