30 research outputs found

    Does metformin affect ovarian morphology in patients with polycystic ovary syndrome? A retrospective cross-sectional preliminary analysis

    Get PDF
    Abstract Background The significance of polycystic ovarian morphology and its relation to polycystic ovary syndrome (PCOS) is unclear, but probably it is associated with higher androgen and insulin levels and lower sex hormone binding globulin (SHBG) in absence of identifiable differences in gonadotropin dynamics. The aim of this study was to evaluate ovarian morphology in patients affected by PCOS with different ovulatory responses to metformin. Methods In this cross-sectional analysis, we studied 20 young normal-weight PCOS patients who had received a six-month course of metformin treatment. Ten of these patients remained anovulatory (anovulatory group), whereas other ten became ovulatory, but failed to conceive (ovulatory group). Other ten age- and body mass index (BMI)-matched PCOS subjects were also enrolled as controls and observed without any treatment (control group). Results After six months of metformin, in both PCOS treated groups, a similar improvement in testosterone (T) and insulin resistance indexes was observed. Moreover, in one (10.0%) and nine (90.0%) subjects from anovulatory and ovulatory PCOS groups, respectively, ovarian morphology changed, whereas a significant reduction in ovarian dimension was observed in the PCOS ovulatory group only. Conclusion PCOS patients under metformin administration demonstrate a change in ovarian morphology closely related to ovulatory response.</p

    The Genetics of Non-Syndromic Primary Ovarian Insufficiency: A Systematic Review

    Get PDF
    Several causes for primary ovarian insufficiency (POI) have been described, including iatrogenic and environmental factor, viral infections, chronic disease as well as genetic alterations. The aim of this review was to collect all the genetic mutations associated with non-syndromic POI. All studies, including gene screening, genome-wide study and assessing genetic mutations associated with POI, were included and analyzed in this systematic review. Syndromic POI and chromosomal abnormalities were not evaluated. Single gene perturbations, including genes on the X chromosome (such as BMP15, PGRMC1 and FMR1) and genes on autosomal chromosomes (such as GDF9, FIGLA, NOBOX, ESR1, FSHR and NANOS3) have a positive correlation with non-syndromic POI. Future strategies include linkage analysis of families with multiple affected members, array comparative genomic hybridization (CGH) for analysis of copy number variations, next generation sequencing technology and genome-wide data analysis. This review showed variability of the genetic factors associated with POI. These findings may help future genetic screening studies on large cohort of women

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
    corecore