9 research outputs found

    Using trauma injury severity score (TRISS) variables to predict length of hospital stay following trauma in New Zealand

    Get PDF
    Aim – To develop and assess the predictive capabilities of a statistical model that relates routinely collected Trauma Injury Severity Score (TRISS) variables to length of hospital stay (LOS) in survivors of traumatic injury. Method – Retrospective cohort study of adults who sustained a serious traumatic injury, and who survived until discharge from Auckland City, Middlemore, Waikato, or North Shore Hospitals between 2002 and 2006. Cubic-root transformed LOS was analysed using two-level mixed-effects regression models. Results – 1498 eligible patients were identified, 1446 (97%) injured from a blunt mechanism and 52 (3%) from a penetrating mechanism. For blunt mechanism trauma, 1096 (76%) were male, average age was 37 years (range: 15-94 years), and LOS and TRISS score information was available for 1362 patients. Spearman’s correlation and the median absolute prediction error between LOS and the original TRISS model was ρ=0.31 and 10.8 days, respectively, and between LOS and the final multivariable two-level mixed-effects regression model was ρ=0.38 and 6.0 days, respectively. Insufficient data were available for the analysis of penetrating mechanism models. Conclusions – Neither the original TRISS model nor the refined model has sufficient ability to accurately or reliably predict LOS. Additional predictor variables for LOS and other indicators for morbidity need to be considered

    Contemporary New Zealand coefficients for the Trauma Injury Severity Score: TRISS(NZ)

    Get PDF
    Aims – To develop local contemporary coefficients for the Trauma Injury Severity Score in New Zealand, TRISS(NZ), and to evaluate their performance at predicting survival against the original TRISS coefficients. Methods – Retrospective cohort study of adults who sustained a serious traumatic injury, and who survived until presentation at Auckland City, Middlemore, Waikato, or North Shore Hospitals between 2002 and 2006. Coefficients were estimated using ordinary and multilevel mixed-effects logistic regression models. Results – 1735 eligible patients were identified, 1672 (96%) injured from a blunt mechanism and 63 (4%) from a penetrating mechanism. For blunt mechanism trauma, 1250 (75%) were male and average age was 38 years (range: 15-94 years). TRISS information was available for 1565 patients of whom 204 (13%) died. Area under the Receiver Operating Characteristic (ROC) curves was 0.901 (95%CI: 0.879-0.923) for the TRISS(NZ) model and 0.890 (95% CI: 0.866-0.913) for TRISS (P<0.001). Insufficient data were available to determine coefficients for penetrating mechanism TRISS(NZ) models. Conclusions – Both TRISS models accurately predicted survival for blunt mechanism trauma. However, TRISS(NZ) coefficients were statistically superior to TRISS coefficients. A strong case exists for replacing TRISS coefficients in the New Zealand benchmarking software with these updated TRISS(NZ) estimates

    The association between GCS and AIS-HR scores among children who suffered early childhood traumatic head injury.

    No full text
    <p>Bars represent AIS-HR scores, so that the darker the bar the more serious the radiological injury: mild–moderate (white), serious–severe (gray), and critical (black) (n=594). Overall, the two scales were associated as per non-parametric Spearman’s rank correlations (ρ=-0.46; p<0.001).</p

    Glasgow Coma Scale (GCS) scores and the prevalence of long-term disability among children admitted to hospital with traumatic head injury, with a radiological diagnosis more severe than a simple linear skull fracture (n=138).

    No full text
    <p>Glasgow Coma Scale (GCS) scores and the prevalence of long-term disability among children admitted to hospital with traumatic head injury, with a radiological diagnosis more severe than a simple linear skull fracture (n=138). </p
    corecore