10 research outputs found

    Dietary restriction reduces angiogenesis and growth in an orthotopic mouse brain tumour model

    Get PDF
    Diet and lifestyle produce major effects on tumour incidence, prevalence, and natural history. Moderate dietary restriction has long been recognised as a natural therapy that improves health, promotes longevity, and reduces both the incidence and growth of many tumour types. Dietary restriction differs from fasting or starvation by reducing total food and caloric intake without causing nutritional deficiencies. No prior studies have evaluated the responsiveness of malignant brain cancer to dietary restriction. We found that a moderate dietary restriction of 30–40% significantly inhibited the intracerebral growth of the CT-2A syngeneic malignant mouse astrocytoma by almost 80%. The total dietary intake for the ad libitum control group (n=9) and the dietary restriction experimental group (n=10) was about 20 and 13 Kcal day−1, respectively. Overall health and vitality was better in the dietary restriction-fed mice than in the ad libitum-fed mice. Tumour microvessel density (Factor VIII immunostaining) was two-fold less in the dietary restriction mice than in the ad libitum mice, whereas the tumour apoptotic index (TUNEL assay) was three-fold greater in the dietary restriction mice than in the ad libitum mice. CT-2A tumour cell-induced vascularity was also less in the dietary restriction mice than in the ad libitum mice in the in vivo Matrigel plug assay. These findings indicate that dietary restriction inhibited CT-2A growth by reducing angiogenesis and by enhancing apoptosis. Dietary restriction may shift the tumour microenvironment from a proangiogenic to an antiangiogenic state through multiple effects on the tumour cells and the tumour-associated host cells. Our data suggest that moderate dietary restriction may be an effective antiangiogenic therapy for recurrent malignant brain cancers

    Absence of pathogenic mitochondrial DNA mutations in mouse brain tumors

    Get PDF
    BACKGROUND: Somatic mutations in the mitochondrial genome occur in numerous tumor types including brain tumors. These mutations are generally found in the hypervariable regions I and II of the displacement loop and unlikely alter mitochondrial function. Two hypervariable regions of mononucleotide repeats occur in the mouse mitochondrial genome, i.e., the origin of replication of the light strand (O(L)) and the Arg tRNA. METHODS: In this study we examined the entire mitochondrial genome in a series of chemically induced brain tumors in the C57BL/6J strain and spontaneous brain tumors in the VM mouse strain. The tumor mtDNA was compared to that of mtDNA in brain mitochondrial populations from the corresponding syngeneic mouse host strain. RESULTS: Direct sequencing revealed a few homoplasmic base pair insertions, deletions, and substitutions in the tumor cells mainly in regions of mononucleotide repeats. A heteroplasmic mutation in the 16srRNA gene was detected in a spontaneous metastatic VM brain tumor. CONCLUSION: None of the mutations were considered pathogenic, indicating that mtDNA somatic mutations do not likely contribute to the initiation or progression of these diverse mouse brain tumors

    Electroporation of mycobacteria.

    No full text
    International audienceHigh-efficiency transformation of DNA is integral to the study of mycobacteria, allowing genetic manipulation. Electroporation is the most widely used method for introducing DNA into mycobacterial strains. Many parameters contribute to high-efficiency transformation; these include the species per strain, the transforming DNA, the selectable marker, the growth medium additives, and the conditions of electroporation. In this chapter we provide an optimized method for the transformation of representative slow- and fast-growing species of mycobacteria-Mycobacterium tuberculosis and M. smegmatis, respectively

    Real-Time Bioluminescence Imaging of Mixed Mycobacterial Infections

    Get PDF
    Molecular analysis of infectious processes in bacteria normally involves construction of isogenic mutants that can then be compared to wild type in an animal model. Pathogenesis and antimicrobial studies are complicated by variability between animals and the need to sacrifice individual animals at specific time points. Live animal imaging allows real-time analysis of infections without the need to sacrifice animals, allowing quantitative data to be collected at multiple time points in all organs simultaneously. However, imaging has not previously allowed simultaneous imaging of both mutant and wild type strains of mycobacteria in the same animal. We address this problem by using both firefly (Photinus pyralis) and click beetle (Pyrophorus plagiophthalamus) red luciferases, which emit distinct bioluminescent spectra, allowing simultaneous imaging of two different mycobacterial strains during infection. We also demonstrate that these same bioluminescence reporters can be used to evaluate therapeutic efficacy in real-time, greatly facilitating our ability to screen novel antibiotics as they are developed. Due to the slow growth rate of mycobacteria, novel imaging technologies are a pressing need, since they can they can impact the rate of development of new therapeutics as well as improving our understanding of virulence mechanisms and the evaluation of novel vaccine candidates
    corecore