2,120 research outputs found

    Cyclin C is Sufficient for Myoblast Differentiation-Induced Mitochondrial Fragmentation

    Get PDF
    One of the largest and most dynamic tissues in the body, skeletal muscle, requires constant regeneration and upkeep. Dysregulation of this regeneration process has been implicated in many neuromuscular diseases and myotonic dystrophies. Regeneration requires the differentiation of myogenic lineages including exiting the cell cycle, gene expression changes, and fusing of myoblasts into multinucleate myotubes. Part of this reconstruction requires the breakdown and repopulation of mitochondrial networks. At the early onset of myoblast differentiation, there is an upregulation of dynamin-related protein, Drp1, and an increase in mitophagy mediated by sequestosome (SQSTM1) removal of mitochondria. Previously, our lab has shown that mitochondrial fragmentation following stress requires the transcriptional regulator cyclin C, the regulatory subunit for cyclin-dependent kinase 8 (Cdk8). Preliminary data indicate that cyclin C is required for mitochondrial fragmentation during myoblast differentiation. At the early onset, cyclin C co-localizes with the mitochondria, as visualized with indirect immunofluorescence. Cells were additionally treated with PFTΌ, a cytosolic chaperone inhibitor that blocks translocation of cyclin C to the mitochondria, and in turn inhibition of cyclin C-mediated mitochondrial fragmentation. This treatment resulted in lack of mitochondrial fragmentation typically seen during the differentiation process. In addition, efficiency of differentiation was quantified using gene expression of myogenic regulatory factors (MRFs) MyoD and Myosin Heavy Chain (MyHC), which are normally expressed in a temporal manner throughout differentiation. PFTΌ treatment significantly delayed the onset of MyoD. Our lab has previously identified a peptide S-HAD, that causes continual mitochondrial fragmentation via the release of cyclin C by targeting of the binding domain for nuclear retention. When treated with S-HAD, cells experienced impaired differentiation as seen through extensively fragmented mitochondria and lack of reticularity, as well as irregular expression of both MRFs via RT-qPCR. Based on these findings, it was determined that cyclin C is sufficient to induce mitochondrial fragmentation associated with myogenic differentiation

    Use Of An Advising Team

    Get PDF
    The Michael J. Coles College of Business at Kennesaw State University uses selected faculty members on an Advising Team, and provides access to them through walk-in advising hours.  Compared to our previous approach of assigning students to all faculty members, the benefits of this system for the students are more efficient and effective advising.  Students have access to advising at more times, and are more likely to get correct answers quickly.  The benefits for the faculty are that the faculty members on the Team enjoy advising and can have their performance expectations tailored to include advising, while those faculty members who are not interested in advising do not have to participate.  This system acknowledges the differing interests, performance requirements (e.g., research), and abilities of faculty members.  Other colleges and universities may find this approach beneficial for their students and faculty

    Interaction of Close-in Planets with the Magnetosphere of their Host Stars I: Diffusion, Ohmic Dissipation of Time Dependent Field, Planetary Inflation, and Mass Loss

    Full text link
    The unanticipated discovery of the first close-in planet around 51 Peg has rekindled the notion that shortly after their formation outside the snow line, some planets may have migrated to the proximity of their host stars because of their tidal interaction with their nascent disks. If these planets indeed migrated to their present-day location, their survival would require a halting mechanism in the proximity of their host stars. Most T Tauri stars have strong magnetic fields which can clear out a cavity in the innermost regions of their circumstellar disks and impose magnetic induction on the nearby young planets. Here we consider the possibility that a magnetic coupling between young stars and planets could quench the planet's orbital evolution. After a brief discussion of the complexity of the full problem, we focus our discussion on evaluating the permeation and ohmic dissipation of the time dependent component of the stellar magnetic field in the planet's interior. Adopting a model first introduced by C. G. Campbell for interacting binary stars, we determine the modulation of the planetary response to the tilted magnetic field of a non-synchronously spinning star. We first compute the conductivity in the young planets, which indicates that the stellar field can penetrate well into the planet's envelope in a synodic period. For various orbital configurations, we show that the energy dissipation rate inside the planet is sufficient to induce short-period planets to inflate. This process results in mass loss via Roche lobe overflow and in the halting of the planet's orbital migration.Comment: 47 pages, 12 figure

    Promiscuous mating in feral pigs (\u3ci\u3eSus scrofa\u3c/i\u3e) from Texas, USA

    Get PDF
    Context. Feral pigs represent a significant threat to agriculture and ecosystems and are disease reservoirs for pathogens affecting humans, livestock and other wildlife. Information on the behavioural ecology of feral pigs might increase the efficiency and effectiveness of management strategies. Aims. We assessed the frequency of promiscuous mating in relation to oestrous synchrony in feral pigs from southern Texas, USA, an agroecosystem with a widespread and well established population of feral pigs. An association between multiple paternity of single litters and synchrony of oestrous may indicate alternative mating strategies, such as mateguarding. Methods. We collected gravid sows at nine sites in southern Texas during 2005–07. We used a panel of DNA microsatellite markers to estimate frequency of multiple paternity and the distribution of male mating among litters of feral pigs. Conception dates were determined by fitting average fetal crown–rump measurements within litters to expected fetal development relative to gestation time. Key results. We found evidence of multiple paternity in 21 of 64 litters (33%) from seven of nine sites sampled. Synchrony of oestrous did not influence promiscuous mating, as we found multiple paternity at sites with synchronous and asynchronous oestrous. Males sired from 8 to 11 offspring at three sites where \u3e10 litters were sampled. Mean litter size (5.4) was less than the best-fit value for the number of offspring, indicating that some males sired offspring with ≄2 females. Key conclusions. Feral pigs in Texas appear to be promiscuous under a range of demographic conditions, unlike wild boar and feral pigs in other regions. The ecological and behavioural factors affecting multiple paternity are not clear, but may include male–male competition, harassment avoidance, genetic benefits for offspring, response to macro-habitat conditions, or selection. Implications. A high incidence of sexual contact among individuals may increase the opportunity for diseases transmitted by oral or venereal routes, such as swine brucellosis and pseudorabies. In addition, fertility-control methods targeting males only are likely to be inefficient if female promiscuity is high; methods targeting females or both sexes jointly may be more effective

    Promiscuous mating in feral pigs (\u3ci\u3eSus scrofa\u3c/i\u3e) from Texas, USA

    Get PDF
    Context. Feral pigs represent a significant threat to agriculture and ecosystems and are disease reservoirs for pathogens affecting humans, livestock and other wildlife. Information on the behavioural ecology of feral pigs might increase the efficiency and effectiveness of management strategies. Aims. We assessed the frequency of promiscuous mating in relation to oestrous synchrony in feral pigs from southern Texas, USA, an agroecosystem with a widespread and well established population of feral pigs. An association between multiple paternity of single litters and synchrony of oestrous may indicate alternative mating strategies, such as mateguarding. Methods. We collected gravid sows at nine sites in southern Texas during 2005–07. We used a panel of DNA microsatellite markers to estimate frequency of multiple paternity and the distribution of male mating among litters of feral pigs. Conception dates were determined by fitting average fetal crown–rump measurements within litters to expected fetal development relative to gestation time. Key results. We found evidence of multiple paternity in 21 of 64 litters (33%) from seven of nine sites sampled. Synchrony of oestrous did not influence promiscuous mating, as we found multiple paternity at sites with synchronous and asynchronous oestrous. Males sired from 8 to 11 offspring at three sites where \u3e10 litters were sampled. Mean litter size (5.4) was less than the best-fit value for the number of offspring, indicating that some males sired offspring with ≄2 females. Key conclusions. Feral pigs in Texas appear to be promiscuous under a range of demographic conditions, unlike wild boar and feral pigs in other regions. The ecological and behavioural factors affecting multiple paternity are not clear, but may include male–male competition, harassment avoidance, genetic benefits for offspring, response to macro-habitat conditions, or selection. Implications. A high incidence of sexual contact among individuals may increase the opportunity for diseases transmitted by oral or venereal routes, such as swine brucellosis and pseudorabies. In addition, fertility-control methods targeting males only are likely to be inefficient if female promiscuity is high; methods targeting females or both sexes jointly may be more effective

    The Wide Brown Dwarf Binary Oph 1622-2405 and Discovery of A Wide, Low Mass Binary in Ophiuchus (Oph 1623-2402): A New Class of Young Evaporating Wide Binaries?

    Full text link
    We imaged five objects near the star forming clouds of Ophiuchus with the Keck Laser Guide Star AO system. We resolved Allers et al. (2006)'s #11 (Oph 16222-2405) and #16 (Oph 16233-2402) into binary systems. The #11 object is resolved into a 243 AU binary, the widest known for a very low mass (VLM) binary. The binary nature of #11 was discovered first by Allers (2005) and independently here during which we obtained the first spatially resolved R~2000 near-infrared (J & K) spectra, mid-IR photometry, and orbital motion estimates. We estimate for 11A and 11B gravities (log(g)>3.75), ages (5+/-2 Myr), luminosities (log(L/Lsun)=-2.77+/-0.10 and -2.96+/-0.10), and temperatures (Teff=2375+/-175 and 2175+/-175 K). We find self-consistent DUSTY evolutionary model (Chabrier et al. 2000) masses of 17+4-5 MJup and 14+6-5 MJup, for 11A and 11B respectively. Our masses are higher than those previously reported (13-15 MJup and 7-8 MJup) by Jayawardhana & Ivanov (2006b). Hence, we find the system is unlikely a ``planetary mass binary'', (in agreement with Luhman et al. 2007) but it has the second lowest mass and lowest binding energy of any known binary. Oph #11 and Oph #16 belong to a newly recognized population of wide (>100 AU), young (<10 Myr), roughly equal mass, VLM stellar and brown dwarf binaries. We deduce that ~6+/-3% of young (<10 Myr) VLM objects are in such wide systems. However, only 0.3+/-0.1% of old field VLM objects are found in such wide systems. Thus, young, wide, VLM binary populations may be evaporating, due to stellar encounters in their natal clusters, leading to a field population depleted in wide VLM systems.Comment: Accepted version V2. Now 13 pages longer (45 total) due to a new discussion of the stability of the wide brown dwarf binary population, new summary Figure 17 now included, Astrophysical Journal 2007 in pres

    The Association between Environmental Lead Exposure and Bone Density in Children

    Get PDF
    Osteoporosis is a decrease in bone mineral density (BMD) that predisposes individuals to fractures. Although an elderly affliction, a predisposition may develop during adolescence if a sufficient peak BMD is not achieved. Rat studies have found that lead exposure is associated with decreased BMD. However, human studies are limited. We hypothesized that the BMD of children with high lead exposure would be lower than the BMD of children with low lead exposure. We collected data on 35 subjects; 16 had low cumulative lead exposure (mean, 6.5 ÎŒg/dL), and 19 had high exposure (mean, 23.6 ÎŒg/dL). All were African American; there was no difference between the groups by sex, age, body mass index, socioeconomic status, physical activity, or calcium intake. Significant differences in BMD between low and high cumulative lead exposure were noted in the head (1.589 vs. 1.721 g/cm(2)), third lumbar vertebra (0.761 vs. 0.819 g/cm(2)), and fourth lumbar vertebra (0.712 vs. 0.789 g/cm(2)). Contrary to our hypothesis, subjects with high lead exposure had a significantly higher BMD than did subjects with low lead exposure. This may reflect a true phenomenon because lead exposure has been reported to accelerate bony maturation by inhibiting the effects of parathyroid hormone–related peptide. Accelerated maturation of bone may ultimately result in a lower peak BMD being achieved in young adulthood, thus predisposing to osteoporosis in later life. Future studies need to investigate this proposed model
    • 

    corecore