32 research outputs found

    Quantum Hall effect on centimeter scale chemical vapor deposited graphene films

    Full text link
    We report observations of well developed half integer quantum Hall effect (QHE) on mono layer graphene films of 7 mm \times 7 mm in size. The graphene films are grown by chemical vapor deposition (CVD) on copper, then transferred to SiO_{2} /Si substrates, with typical carrier mobilities \approx 4000 cm^{2} /Vs. The large size graphene with excellent quality and electronic homogeneity demonstrated in this work is promising for graphene-based quantum Hall resistance standards, and can also facilitate a wide range of experiments on quantum Hall physics of graphene and practical applications exploiting the exceptional properties of graphene

    Two-Terminal and Multi-Terminal Designs for Next-Generation Quantized Hall Resistance Standards: Contact Material and Geometry

    Get PDF
    In this paper, we show that quantum Hall resistance measurements using two terminals may be as precise as four-terminal measurements when applying superconducting split contacts. The described sample designs eliminate resistance contributions of terminals and contacts such that the size and complexity of next-generation quantized Hall resistance devices can be significantly improved

    Accessing ratios of quantized resistances in graphene p–n junction devices using multiple terminals

    Get PDF
    The utilization of multiple current terminals on millimeter-scale graphene p–n junction devices has enabled the measurement of many atypical, fractional multiples of the quantized Hall resistance at the ν = 2 plateau (RH ≈ 12 906 Ω). These fractions take the form abRH and can be determined both analytically and by simulations. These experiments validate the use of either the LTspice circuit simulator or the analytical framework recently presented in similar work. Furthermore, the production of several devices with large-scale junctions substantiates the approach of using simple ultraviolet lithography to obtain junctions of sufficient sharpness.The utilization of multiple current terminals on millimeter-scale graphene p–n junction devices has enabled the measurement of many atypical, fractional multiples of the quantized Hall resistance at the ν = 2 plateau (RH ≈ 12 906 Ω). These fractions take the form abRH and can be determined both analytically and by simulations. These experiments validate the use of either the LTspice circuit simulator or the analytical framework recently presented in similar work. Furthermore, the production of several devices with large-scale junctions substantiates the approach of using simple ultraviolet lithography to obtain junctions of sufficient sharpness
    corecore