105 research outputs found

    On Effective Theory of Brane World with Small Tension

    Get PDF
    The five dimensional theory compactified on S1S^1 with two ``branes'' (two domain walls) embedded in it is constructed, based on the field-theoretic mechanism to generate the ``brane''. Some light states localized in the ``brane'' appear in the theory. One is the Nambu-Goldstone boson, which corresponds to the breaking of the translational invariance in the transverse direction of the ``brane''. In addition, if the tension of the ``brane'' is smaller than the fundamental scale of the original theory, it is found that there may exist not only massless states but also some massive states lighter than the fundamental scale in the ``brane''. We analyze the four dimensional effective theory by integrating out the freedom of the fifth dimension. We show that some effective couplings can be explicitly calculated. As one of our results, some effective couplings of the state localized in the ``brane'' to the higher Kaluza-Klein modes in the bulk are found to be suppressed by the width of the ``brane''. The resultant suppression factor can be quantitatively different from the one analyzed by Bando et al. using the Nambu-Goto action, while they are qualitatively the same.Comment: 17 pages, uses REVTEX macr

    Effective Field Theory and Unification in AdS Backgrounds

    Full text link
    This work is an extension of our previous work, hep-th/0204160, which showed how to systematically calculate the high energy evolution of gauge couplings in compact AdS_5 backgrounds. We first directly compute the one-loop effects of massive charged scalar fields on the low energy couplings of a gauge theory propagating in the AdS background. It is found that scalar bulk mass scales (which generically are of order the Planck scale) enter only logarithmically in the corrections to the tree-level gauge couplings. As we pointed out previously, we show that the large logarithms that appear in the AdS one-loop calculation can be obtained within the confines of an effective field theory, by running the Planck brane correlator from a high UV matching scale down to the TeV scale. This result exactly reproduces our previous calculation, which was based on AdS/CFT duality. We also calculate the effects of scalar fields satisfying non-trivial boundary conditions (relevant for orbifold breaking of bulk symmetries) on the running of gauge couplings.Comment: LaTeX, 27 pages; minor typos fixed, comments adde

    The Absorptive Extra Dimensions

    Full text link
    It is well known that gravity and neutrino oscillation can be used to probe large extra dimensions in a braneworld scenario. We argue that neutrino oscillation remains a useful probe even when the extra dimensions are small, because the brane-bulk coupling is likely to be large. Neutrino oscillation in the presence of a strong brane-bulk coupling is vastly different from the usual case of a weak coupling. In particular, some active neutrinos could be absorbed by the bulk when they oscillate from one kind to another, a signature which can be taken as the presence of an extra dimension. In a very large class of models which we shall discuss, the amount of absorption for all neutrino oscillations is controlled by a single parameter, a property which distinguishes extra dimensions from other mechanisms for losing neutrino fluxes.Comment: Introduction enlarged; conclusions added. To appear in Phys. Rev.

    Towards 5D Grand Unification without SUSY Flavor Problem

    Full text link
    We consider the renormalization group approach to the SUSY flavor problem in the supersymmetric SU(5) model with one extra dimension. In higher dimensional SUSY gauge theories, it has been recently shown that power corrections due to the Kaluza-Klein states of gauge fields run the soft masses generated at the orbifold fixed point to flavor conserving values in the infra-red limit. In models with GUT breaking at the brane where the GUT scale can be larger than the compactification scale, we show that the addition of a bulk Higgs multiplet, which is necessary for the successful unification, is compatible with the flavor universality achieved at the compactification scale.Comment: JHEP style file of 35 pages with 3 figures, Version to appear in JHE

    Brane Junctions in the Randall-Sundrum Scenario

    Get PDF
    We present static solutions to Einstein's equations corresponding to branes at various angles intersecting in a single 3-brane. Such configurations may be useful for building models with localized gravity via the Randall-Sundrum mechanism. We find that such solutions may exist only if the mechanical forces acting on the junction exactly cancel. In addition to this constraint there are further conditions that the parameters of the theory have to satisfy. We find that at least one of these involves only the brane tensions and cosmological constants, and thus can not have a dynamical origin. We present these conditions in detail for two simple examples. We discuss the nature of the cosmological constant problem in the framework of these scenarios, and outline the desired features of the brane configurations which may bring us closer towards the resolution of the cosmological constant problem.Comment: 15 pages, LaTeX. 4 postscript figures included. Typo corrected and reference adde

    Invisible Axions and Large-Radius Compactifications

    Get PDF
    We study some of the novel effects that arise when the QCD axion is placed in the ``bulk'' of large extra spacetime dimensions. First, we find that the mass of the axion can become independent of the energy scale associated with the breaking of the Peccei-Quinn symmetry. This implies that the mass of the axion can be adjusted independently of its couplings to ordinary matter, thereby providing a new method of rendering the axion invisible. Second, we discuss the new phenomenon of laboratory axion oscillations (analogous to neutrino oscillations), and show that these oscillations cause laboratory axions to ``decohere'' extremely rapidly as a result of Kaluza-Klein mixing. This decoherence may also be a contributing factor to axion invisibility. Third, we discuss the role of Kaluza-Klein axions in axion-mediated processes and decays, and propose several experimental tests of the higher-dimensional nature of the axion. Finally, we show that under certain circumstances, the presence of an infinite tower of Kaluza-Klein axion modes can significantly accelerate the dissipation of the energy associated with cosmological relic axion oscillations, thereby enabling the Peccei-Quinn symmetry-breaking scale to exceed the usual four-dimensional relic oscillation bounds. Together, these ideas therefore provide new ways of obtaining an ``invisible'' axion within the context of higher-dimensional theories with large-radius compactifications.Comment: 43 pages, LaTeX, 6 figure

    Layered Higgs Phase as a Possible Field Localisation on a Brane

    Full text link
    So far it has been found by using lattice techniques that in the anisotropic five--dimensional Abelian Higgs model, a layered Higgs phase exists in addition to the expected five--dimensional one. The exploration of the phase diagram has shown that the two Higgs phases are separated by a phase transition from the confining phase. This transition is known to be first order. In this paper we explore the possibility of finding a second order transition point in the critical line which separates the first order phase transition from the crossover region. This is shown to be the case only for the four--dimensional Higgs layered phase whilst the phase transition to the five--dimensional broken phase remains first order. The layered phase serves as the possible realisation of four--dimensional spacetime dynamics which is embedded in a five--dimensional spacetime. These results are due to gauge and scalar field localisation by confining interactions along the extra fifth direction.Comment: 1+15 pages, 12 figure

    Abelian D-terms and the superpartner spectrum of anomaly-mediated supersymmetry breaking

    Get PDF
    We address the tachyonic slepton problem of anomaly mediated supersymmetry breaking using abelian D-terms. We demonstrate that the most general extra U(1) symmetry that does not disrupt gauge coupling unification has a large set of possible charges that solves the problem. It is shown that previous studies in this direction that added both an extra hypercharge D-term and another D-term induced by B-L symmetry (or similar) can be mapped into a single D-term of the general ancillary U(1)_a. The U(1)_a formalism enables identifying the sign of squark mass corrections which leads to an upper bound of the entire superpartner spectrum given knowledge of just one superpartner mass.Comment: 10 pages, 2 figures, [v2] reference added, [v3] Eq. (9) corrected, results unaffected, [v4] version to be published in Phys. Rev. D, expanded parameter space for figures to match tex

    The Amundsen Sea Polynya International Research Expedition (ASPIRE)

    Get PDF
    In search of an explanation for some of the greenest waters ever seen in coastal Antarctica and their possible link to some of the fastest melting glaciers and declining summer sea ice, the Amundsen Sea Polynya International Research Expedition (ASPIRE) challenged the capabilities of the US Antarctic Program and RVIB Nathaniel B. Palmer during Austral summer 2010–2011. We were well rewarded by both an extraordinary research platform and a truly remarkable oceanic setting. Here we provide further insights into the key questions that motivated our sampling approach during ASPIRE and present some preliminary findings, while highlighting the value of the Palmer for accomplishing complex, multifaceted oceanographic research in such a challenging environment

    Unification in 5D SO(10)

    Full text link
    Gauge unification in a five dimensional supersymmetric SO(10) model compactified on an orbifold S1/(Z2×Z2)S^1/(Z_2 \times Z_2^{\prime}) is studied. One orbifolding reduces N=2 supersymmetry to N=1, and the other breaks SO(10) to the Pati-Salam gauge group \ps. Further breaking to the standard model gauge group is made through the Higgs mechanism on one of the branes. The differences of the three gauge couplings run logarithmically even in five dimensions and we can keep the predictability for unification as in four dimensional gauge theories. We obtain an excellent prediction for gauge coupling unification with a cutoff scale M3×1017M_* \sim 3 \times 10^{17} GeV and a compactification scale Mc1.5×1014M_c \sim 1.5 \times 10^{14} GeV. Finally, although proton decay due to dimension 5 operators may be completely eliminated, the proton decay rate in these models is sensitive to the placement of matter multiplets in the 5th dimension, as well as to the unknown physics above the cutoff scale.Comment: 33 pages, one reference added and fig. 3 caption correcte
    corecore