560 research outputs found

    Rigid Supersymmetric Theories in Curved Superspace

    Full text link
    We present a uniform treatment of rigid supersymmetric field theories in a curved spacetime M\mathcal{M}, focusing on four-dimensional theories with four supercharges. Our discussion is significantly simpler than earlier treatments, because we use classical background values of the auxiliary fields in the supergravity multiplet. We demonstrate our procedure using several examples. For M=AdS4\mathcal{M}=AdS_4 we reproduce the known results in the literature. A supersymmetric Lagrangian for M=S4\mathcal{M}=\mathbb{S}^4 exists, but unless the field theory is conformal, it is not reflection positive. We derive the Lagrangian for M=S3×R\mathcal{M}=\mathbb{S}^3\times \mathbb{R} and note that the time direction R\mathbb{R} can be rotated to Euclidean signature and be compactified to §1\S^1 only when the theory has a continuous R-symmetry. The partition function on M=S3ק1\mathcal{M}=\mathbb{S}^3\times \S^1 is independent of the parameters of the flat space theory and depends holomorphically on some complex background gauge fields. We also consider R-invariant N=2\mathcal{N}=2 theories on S3\mathbb{S}^3 and clarify a few points about them.Comment: 26 pages, uses harvmac; v2 with added reference

    Formation and Propagation of Matter Wave Soliton Trains

    Full text link
    Attraction between atoms in a Bose-Einstein-Condensate renders the condensate unstable to collapse. Confinement in an atom trap, however, can stabilize the condensate for a limited number of atoms, as was observed with 7Li, but beyond this number, the condensate collapses. Attractive condensates constrained to one-dimensional motion are predicted to form stable solitons for which the attractive interactions exactly compensate for the wave packet dispersion. Here we report the formation or bright solitons of 7Li atoms created in a quasi-1D optical trap. The solitons are created from a stable Bose-Einstein condensate by magnetically tuning the interactions from repulsive to attractive. We observe a soliton train, containing many solitons. The solitons are set in motion by offsetting the optical potential and are observed to propagate in the potential for many oscillatory cycles without spreading. Repulsive interactions between neighboring solitons are inferred from their motion

    Chiral Generations on Intersecting 5-branes in Heterotic String Theory

    Full text link
    We show that there exist two 27 and one 27 bar of E6, net one D=4, N=1 chiral matter supermultiplet as zero modes localized on the intersection of two 5-branes in the E8 x E8 heterotic string theory. The smeared intersecting 5-brane solution is used via the standard embedding to construct a heterotic background, which provides, after a compactification of some of the transverse dimensions, a five-dimensional Randall-Sundrum II like brane-world set-up in heterotic string theory. As a by-product, we present a new proof of anomaly cancellation between those from the chiral matter and the anomaly inflow onto the brane without small instanton.Comment: 26 pages, 5 figures; references added, typo correcte

    Evidence for F(uzz) Theory

    Full text link
    We show that in the decoupling limit of an F-theory compactification, the internal directions of the seven-branes must wrap a non-commutative four-cycle S. We introduce a general method for obtaining fuzzy geometric spaces via toric geometry, and develop tools for engineering four-dimensional GUT models from this non-commutative setup. We obtain the chiral matter content and Yukawa couplings, and show that the theory has a finite Kaluza-Klein spectrum. The value of 1/alpha_(GUT) is predicted to be equal to the number of fuzzy points on the internal four-cycle S. This relation puts a non-trivial restriction on the space of gauge theories that can arise as a limit of F-theory. By viewing the seven-brane as tiled by D3-branes sitting at the N fuzzy points of the geometry, we argue that this theory admits a holographic dual description in the large N limit. We also entertain the possibility of constructing string models with large fuzzy extra dimensions, but with a high scale for quantum gravity.Comment: v2: 66 pages, 3 figures, references and clarifications adde

    SUSY Splits, But Then Returns

    Full text link
    We study the phenomenon of accidental or "emergent" supersymmetry within gauge theory and connect it to the scenarios of Split Supersymmetry and Higgs compositeness. Combining these elements leads to a significant refinement and extension of the proposal of Partial Supersymmetry, in which supersymmetry is broken at very high energies but with a remnant surviving to the weak scale. The Hierarchy Problem is then solved by a non-trivial partnership between supersymmetry and compositeness, giving a promising approach for reconciling Higgs naturalness with the wealth of precision experimental data. We discuss aspects of this scenario from the AdS/CFT dual viewpoint of higher-dimensional warped compactification. It is argued that string theory constructions with high scale supersymmetry breaking which realize warped/composite solutions to the Hierarchy Problem may well be accompanied by some or all of the features described. The central phenomenological considerations and expectations are discussed, with more detailed modelling within warped effective field theory reserved for future work.Comment: 29 pages. Flavor and CP constraints on left-right symmetric structure briefly discussed. References adde

    Higgsing M2 to D2 with gravity: N=6 chiral supergravity from topologically gauged ABJM theory

    Get PDF
    We present the higgsing of three-dimensional N=6 superconformal ABJM type theories coupled to conformal supergravity, so called topologically gauged ABJM theory, thus providing a gravitational extension of previous work on the relation between N M2 and N D2-branes. The resulting N=6 supergravity theory appears at a chiral point similar to that of three-dimensional chiral gravity introduced recently by Li, Song and Strominger, but with the opposite sign for the Ricci scalar term in the lagrangian. We identify the supersymmetry in the broken phase as a particular linear combination of the supersymmetry and special conformal supersymmetry in the original topologically gauged ABJM theory. We also discuss the higgsing procedure in detail paying special attention to the role played by the U(1) factors in the original ABJM model and the U(1) introduced in the topological gauging.Comment: 53 pages, Late

    Evaluating privacy-preserving record linkage using cryptographic long-term keys and multibit trees on large medical datasets.

    Get PDF
    Background: Integrating medical data using databases from different sources by record linkage is a powerful technique increasingly used in medical research. Under many jurisdictions, unique personal identifiers needed for linking the records are unavailable. Since sensitive attributes, such as names, have to be used instead, privacy regulations usually demand encrypting these identifiers. The corresponding set of techniques for privacy-preserving record linkage (PPRL) has received widespread attention. One recent method is based on Bloom filters. Due to superior resilience against cryptographic attacks, composite Bloom filters (cryptographic long-term keys, CLKs) are considered best practice for privacy in PPRL. Real-world performance of these techniques using large-scale data is unknown up to now. Methods: Using a large subset of Australian hospital admission data, we tested the performance of an innovative PPRL technique (CLKs using multibit trees) against a gold-standard derived from clear-text probabilistic record linkage. Linkage time and linkage quality (recall, precision and F-measure) were evaluated. Results: Clear text probabilistic linkage resulted in marginally higher precision and recall than CLKs. PPRL required more computing time but 5 million records could still be de-duplicated within one day. However, the PPRL approach required fine tuning of parameters. Conclusions: We argue that increased privacy of PPRL comes with the price of small losses in precision and recall and a large increase in computational burden and setup time. These costs seem to be acceptable in most applied settings, but they have to be considered in the decision to apply PPRL. Further research on the optimal automatic choice of parameters is needed

    Results from PAMELA, ATIC and FERMI : Pulsars or Dark Matter ?

    Full text link
    It is well known that the dark matter dominates the dynamics of galaxies and clusters of galaxies. Its constituents remain a mystery despite an assiduous search for them over the past three decades. Recent results from the satellite-based PAMELA experiment detect an excess in the positron fraction at energies between 10-100 GeV in the secondary cosmic ray spectrum. Other experiments namely ATIC, HESS and FERMI show an excess in the total electron (\ps + \el) spectrum for energies greater 100 GeV. These excesses in the positron fraction as well as the electron spectrum could arise in local astrophysical processes like pulsars, or can be attributed to the annihilation of the dark matter particles. The second possibility gives clues to the possible candidates for the dark matter in galaxies and other astrophysical systems. In this article, we give a report of these exciting developments.Comment: 27 Pages, extensively revised and significantly extended, to appear in Pramana as topical revie

    A slice of AdS_5 as the large N limit of Seiberg duality

    Get PDF
    A slice of AdS_5 is used to provide a 5D gravitational description of 4D strongly-coupled Seiberg dual gauge theories. An (electric) SU(N) gauge theory in the conformal window at large N is described by the 5D bulk, while its weakly coupled (magnetic) dual is confined to the IR brane. This framework can be used to construct an N = 1 MSSM on the IR brane, reminiscent of the original Randall-Sundrum model. In addition, we use our framework to study strongly-coupled scenarios of supersymmetry breaking mediated by gauge forces. This leads to a unified scenario that connects the extra-ordinary gauge mediation limit to the gaugino mediation limit in warped space.Comment: 47 Pages, axodraw4j.st
    corecore