6 research outputs found

    The Environment For Women Working On Environmental Problems

    Get PDF

    Incidental findings from cancer next generation sequencing panels

    Get PDF
    Next-generation sequencing (NGS) technologies have facilitated multi-gene panel (MGP) testing to detect germline DNA variants in hereditary cancer patients. This sensitive technique can uncover unexpected, non-germline incidental findings indicative of mosaicism, clonal hematopoiesis (CH), or hematologic malignancies. A retrospective chart review was conducted to identify cases of incidental findings from NGS-MGP testing. Inclusion criteria included: 1) multiple pathogenic variants in the same patient; 2) pathogenic variants at a low allele fraction; and/or 3) the presence of pathogenic variants not consistent with family history. Secondary tissue analysis, complete blood count (CBC) and medical record review were conducted to further delineate the etiology of the pathogenic variants. Of 6060 NGS-MGP tests, 24 cases fulfilling our inclusion criteria were identified. Pathogenic variants were detected in TP53, ATM, CHEK2, BRCA1 and APC. 18/24 (75.0%) patients were classified as CH, 3/24 (12.5%) as mosaic, 2/24 (8.3%) related to a hematologic malignancy, and 1/24 (4.2%) as true germline. We describe a case-specific workflow to identify and interpret the nature of incidental findings on NGS-MGP. This workflow will provide oncology and genetic clinics a practical guide for the management and counselling of patients with unexpected NGS-MGP findings

    A Comparison of Patient-Reported Outcomes Following Consent for Genetic Testing Using an Oncologist- or Genetic Counselor-Mediated Model of Care

    No full text
    This study compares knowledge, experience and understanding of genetic testing, and psychological outcomes among breast and ovarian cancer patients undergoing multi-gene panel testing via genetic counselor-mediated (GMT) or oncologist-mediated (OMT) testing models. A pragmatic, prospective survey of breast and ovarian cancer patients pursuing genetic testing between January 2017 and August 2019 was conducted at the Princess Margaret Cancer Centre in Toronto, Canada. A total of 120 (80 GMT; 40 OMT) individuals completed a survey administered one week following consent to genetic testing. Compared to OMT, the GMT cohort had higher median knowledge (8 vs. 9; p = 0.025) and experience/understanding scores (8.5 vs. 10; p < 0.001) at the time of genetic testing. Significant differences were noted in the potential psychological concerns experienced, with individuals in the GMT cohort more likely to screen positive in the hereditary predisposition domain of the Psychosocial Aspects of Hereditary Cancer tool (55% vs. 27.5%; p = 0.005), and individuals in the OMT cohort more likely to screen positive in the general emotions domain (65.0% vs. 38.8%; p = 0.007). The results of this study suggest that OMT can be implemented to streamline genetic testing; however, post-test genetic counseling should remain available to all individuals undergoing genetic testing, to ensure any psychologic concerns are addressed and that individuals have a clear understanding of relevant implications and limitations of their test results

    Next-Generation Service Delivery: A Scoping Review of Patient Outcomes Associated with Alternative Models of Genetic Counseling and Genetic Testing for Hereditary Cancer

    No full text
    The combination of increased referral for genetic testing and the current shortage of genetic counselors has necessitated the development and implementation of alternative models of genetic counseling and testing for hereditary cancer assessment. The purpose of this scoping review is to provide an overview of the patient outcomes that are associated with alternative models of genetic testing and genetic counseling for hereditary cancer, including germline-only and tumor testing models. Seven databases were searched, selecting studies that were: (1) full-text articles published ≥2007 or conference abstracts published ≥2015, and (2) assessing patient outcomes of an alternative model of genetic counseling or testing. A total of 79 publications were included for review and synthesis. Data-charting was completed using a data-charting form that was developed by the study team for this review. Seven alternative models were identified, including four models that involved a genetic counselor: telephone, telegenic, group, and embedded genetic counseling models; and three models that did not: mainstreaming, direct, and tumor-first genetic testing models. Overall, these models may be an acceptable alternative to traditional models on knowledge, patient satisfaction, psychosocial measures, and the uptake of genetic testing; however, particular populations may be better served by traditional in-person genetic counseling. As precision medicine initiatives continue to advance, institutions should consider the implementation of new models of genetic service delivery, utilizing a model that will best serve the needs of their unique patient populations
    corecore