221 research outputs found

    Factors Influencing Farmers Adoption of Best Management Practices: A Review and Synthesis

    Get PDF

    Polymer Shape Anisotropy and the Depletion Interaction

    Full text link
    We calculate the second and third virial coefficients of the effective sphere-sphere interaction due to polymer depletion. By utilizing the anisotropy of a typical polymer conformation, we can consider polymers that are roughly the same size as the spherical inclusions. We argue that recent experiments can confirm this anisotropy.Comment: 4 pages, 4 eps figures, RevTe

    CP--violating Chargino Contributions to the Higgs Coupling to Photon Pairs in the Decoupling Regime of Higgs Sector

    Full text link
    In most supersymmetric theories, charginos χ~1,2±\tilde{\chi}^\pm_{1,2} belong to the class of the lightest supersymmetric particles and the couplings of Higgs bosons to charginos are in general complex so that the CP--violating chargino contributions to the loop--induced coupling of the lightest Higgs boson to photon pairs can be sizable even in the decoupling limit of large pseudoscalar mass mAm_A with only the lightest Higgs boson kinematically accessible at future high energy colliders. We introduce a specific benchmark scenario of CP violation consistent with the electric dipole moment constraints and with a commonly accepted baryogenesis mechanism in the minimal supersymmetric Standard Model. Based on the benchmark scenario of CP violation, we demonstrate that the fusion of the lightest Higgs boson in linearly polarized photon--photon collisions can allow us to confirm the existence of the CP--violating chargino contributions {\it even in the decoupling regime of the Higgs sector} for nearly degenerate SU(2) gaugino and higgsino mass parameters of about the electroweak scale.Comment: 1+13 pages, 3 eps figure

    Shifts in the Properties of the Higgs Boson from Radion Mixing

    Get PDF
    We examine how mixing between the Standard Model Higgs boson, hh, and the radion present in the Randall-Sundrum model of localized gravity modifies the expected properties of the Higgs boson. In particular, we demonstrate that the total and partial decay widths of the Higgs, as well as the hggh\to gg branching fraction, can be substantially altered from their Standard Model expectations. The remaining branching fractions are modified less than \lsim 5% for most of the parameter space volume.Comment: 17 pages, 7 figs., LaTex; revised versio

    Optimized Variables of the Study of Λb\Lambda_b Polarization

    Full text link
    The value of the bb-baryon polarization can be extracted from inclusive data at LEP with better than 10\% precision based on current statistics. We present a new variable by which to measure the polarization, which is the ratio of the average electron energy to the average neutrino energy. This variable is both sensitive to polarization and insensitive to fragmentation uncertainties.Comment: 10 pages (LaTeX), 2 figures, MIT-CTP-2270, CERN-PPE/94-0

    Brane Universes with Gauss-Bonnet-Induced-Gravity

    Full text link
    The DGP brane world model allows us to get the observed late time acceleration via modified gravity, without the need for a ``dark energy'' field. This can then be generalised by the inclusion of high energy terms, in the form of a Gauss-Bonnet bulk. This is the basis of the Gauss-Bonnet-Induced-Gravity (GBIG) model explored here with both early and late time modifications to the cosmological evolution. Recently the simplest GBIG models (Minkowski bulk and no brane tension) have been analysed. Two of the three possible branches in these models start with a finite density ``Big-Bang'' and with late time acceleration. Here we present a comprehensive analysis of more general models where we include a bulk cosmological constant and brane tension. We show that by including these factors it is possible to have late time phantom behaviour.Comment: 12 pages, 19 figures. Minor modifications to text, comments on phantom behaviour added. References added. As submitted to JCA

    Two Higgs Models for Large Tan Beta and Heavy Second Higgs

    Get PDF
    We study two Higgs models for large tanβ\tan\beta and relatively large second Higgs mass. In this limit the second heavy Higgs should have small vev and therefore couples only weakly to two gauge bosons. Furthermore, the couplings to down type quarks can be significantly modified (so long as the second Higgs is not overly heavy). Both these facts have significant implications for search strategies at the LHC and ILC. We show how an effective theory and explicit fundamental two Higgs model approach are related and consider the additional constraints in the presence of supersymmetry or Z2Z_2 flavor symmetries. We argue that the best tests of the two Higgs doublet potential are likely to be measurements of the light Higgs branching fractions. We show how higher dimension operators that have recently been suggested to raise the light Higgs mass are probably best measured and distinguished in this way.Comment: 16 page

    Brane gravity, higher derivative terms and non-locality

    Get PDF
    In brane world scenarios with a bulk scalar field between two branes it is known that 4-dimensional Einstein gravity is restored at low energies on either brane. By using a gauge-invariant gravitational and scalar perturbation formalism we extend the theory of weak gravity in the brane world scenarios to higher energies, or shorter distances. We argue that weak gravity on either brane is indistinguishable from 4-dimensional higher derivative gravity, provided that the inter-brane distance (radion) is stabilized, that the background bulk scalar field is changing near the branes and that the background bulk geometry near the branes is warped. This argument holds for a general conformal transformation to a frame in which matter on the branes is minimally coupled to the metric. In particular, Newton's constant and the coefficients of curvature-squared terms in the 4-dimensional effective action are determined up to an ambiguity of adding a Gauss-Bonnet topological term. In other words, we provide the brane-world realization of the so called R2R^2-model without utilizing a quantum theory. We discuss the appearance of composite spin-2 and spin-0 fields in addition to the graviton on the brane and point out a possibility that the spin-0 field may play the role of an effective inflaton to drive brane-world inflation. Finally, we conjecture that the sequence of higher derivative terms is an infinite series and, thus, indicates non-locality in the brane world scenarios.Comment: Latex, 18 pages; a comment on the spurious tensor mode was added; recovery condition of higher derivative gravity clarifie

    Cosmological Black Holes on Branes

    Full text link
    We examined analytically a cosmological black hole domain wall system. Using the C-metric construction we derived the metric for the spacetime describing an infinitely thin domain wall intersecting a cosmological black hole. We studied the behaviour of the scalar field describing a self-interacting cosmological domain wall and find the approximated solution valid for large distances. The thin wall approximation and the back raection problem were elaborated finding that the topological kink solution smoothed out singular behaviour of the zero thickness wall using a core topological and hence thick domain wall. We also analyze the nucleation of cosmological black holes on and in the presence of a domain walls and conclude that the domain wall will nucleate small black holes on it rather than large ones inside.Comment: 13 pages, Revtex, to be published in Phys.Rev. D1
    corecore