3 research outputs found

    Identifying Risk Factors, Patient-Reported Experience and Outcome Measures, and Data Capture Tools for an Individualized Pain Prediction Tool in Pediatrics: Focus Group Study

    No full text
    BackgroundThe perioperative period is a data-rich environment with potential for innovation through digital health tools and predictive analytics to optimize patients’ health with targeted prehabilitation. Although some risk factors for postoperative pain following pediatric surgery are already known, the systematic use of preoperative information to guide personalized interventions is not yet widespread in clinical practice. ObjectiveOur long-term goal is to reduce the incidence of persistent postsurgical pain (PPSP) and long-term opioid use in children by developing personalized pain risk prediction models that can guide clinicians and families to identify targeted prehabilitation strategies. To develop such a system, our first objective was to identify risk factors, outcomes, and relevant experience measures, as well as data collection tools, for a future data collection and risk modeling study. MethodsThis study used a patient-oriented research methodology, leveraging parental/caregiver and clinician expertise. We conducted virtual focus groups with participants recruited at a tertiary pediatric hospital; each session lasted approximately 1 hour and was composed of clinicians or family members (people with lived surgical experience and parents of children who had recently undergone a procedure requiring general anesthesia) or both. Data were analyzed thematically to identify potential risk factors for pain, as well as relevant patient-reported experience and outcome measures (PREMs and PROMs, respectively) that can be used to evaluate the progress of postoperative recovery at home. This guidance was combined with a targeted literature review to select tools to collect risk factor and outcome information for implementation in a future study. ResultsIn total, 22 participants (n=12, 55%, clinicians and n=10, 45%, family members) attended 10 focus group sessions; participants included 12 (55%) of 22 persons identifying as female, and 12 (55%) were under 50 years of age. Thematic analysis identified 5 key domains: (1) demographic risk factors, including both child and family characteristics; (2) psychosocial risk factors, including anxiety, depression, and medical phobias; (3) clinical risk factors, including length of hospital stay, procedure type, medications, and pre-existing conditions; (4) PREMs, including patient and family satisfaction with care; and (5) PROMs, including nausea and vomiting, functional recovery, and return to normal activities of daily living. Participants further suggested desirable functional requirements, including use of standardized and validated tools, and longitudinal data collection, as well as delivery modes, including electronic, parent proxy, and self-reporting, that can be used to capture these metrics, both in the hospital and following discharge. Established PREM/PROM questionnaires, pain-catastrophizing scales (PCSs), and substance use questionnaires for adolescents were subsequently selected for our proposed data collection platform. ConclusionsThis study established 5 key data domains for identifying pain risk factors and evaluating postoperative recovery at home, as well as the functional requirements and delivery modes of selected tools with which to capture these metrics both in the hospital and after discharge. These tools have been implemented to generate data for the development of personalized pain risk prediction models

    Global variation in postoperative mortality and complications after cancer surgery: a multicentre, prospective cohort study in 82 countries

    No full text
    © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 4.0 licenseBackground: 80% of individuals with cancer will require a surgical procedure, yet little comparative data exist on early outcomes in low-income and middle-income countries (LMICs). We compared postoperative outcomes in breast, colorectal, and gastric cancer surgery in hospitals worldwide, focusing on the effect of disease stage and complications on postoperative mortality. Methods: This was a multicentre, international prospective cohort study of consecutive adult patients undergoing surgery for primary breast, colorectal, or gastric cancer requiring a skin incision done under general or neuraxial anaesthesia. The primary outcome was death or major complication within 30 days of surgery. Multilevel logistic regression determined relationships within three-level nested models of patients within hospitals and countries. Hospital-level infrastructure effects were explored with three-way mediation analyses. This study was registered with ClinicalTrials.gov, NCT03471494. Findings: Between April 1, 2018, and Jan 31, 2019, we enrolled 15 958 patients from 428 hospitals in 82 countries (high income 9106 patients, 31 countries; upper-middle income 2721 patients, 23 countries; or lower-middle income 4131 patients, 28 countries). Patients in LMICs presented with more advanced disease compared with patients in high-income countries. 30-day mortality was higher for gastric cancer in low-income or lower-middle-income countries (adjusted odds ratio 3·72, 95% CI 1·70–8·16) and for colorectal cancer in low-income or lower-middle-income countries (4·59, 2·39–8·80) and upper-middle-income countries (2·06, 1·11–3·83). No difference in 30-day mortality was seen in breast cancer. The proportion of patients who died after a major complication was greatest in low-income or lower-middle-income countries (6·15, 3·26–11·59) and upper-middle-income countries (3·89, 2·08–7·29). Postoperative death after complications was partly explained by patient factors (60%) and partly by hospital or country (40%). The absence of consistently available postoperative care facilities was associated with seven to 10 more deaths per 100 major complications in LMICs. Cancer stage alone explained little of the early variation in mortality or postoperative complications. Interpretation: Higher levels of mortality after cancer surgery in LMICs was not fully explained by later presentation of disease. The capacity to rescue patients from surgical complications is a tangible opportunity for meaningful intervention. Early death after cancer surgery might be reduced by policies focusing on strengthening perioperative care systems to detect and intervene in common complications. Funding: National Institute for Health Research Global Health Research Unit

    Effects of hospital facilities on patient outcomes after cancer surgery: an international, prospective, observational study

    No full text
    © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licenseBackground: Early death after cancer surgery is higher in low-income and middle-income countries (LMICs) compared with in high-income countries, yet the impact of facility characteristics on early postoperative outcomes is unknown. The aim of this study was to examine the association between hospital infrastructure, resource availability, and processes on early outcomes after cancer surgery worldwide. Methods: A multimethods analysis was performed as part of the GlobalSurg 3 study—a multicentre, international, prospective cohort study of patients who had surgery for breast, colorectal, or gastric cancer. The primary outcomes were 30-day mortality and 30-day major complication rates. Potentially beneficial hospital facilities were identified by variable selection to select those associated with 30-day mortality. Adjusted outcomes were determined using generalised estimating equations to account for patient characteristics and country-income group, with population stratification by hospital. Findings: Between April 1, 2018, and April 23, 2019, facility-level data were collected for 9685 patients across 238 hospitals in 66 countries (91 hospitals in 20 high-income countries; 57 hospitals in 19 upper-middle-income countries; and 90 hospitals in 27 low-income to lower-middle-income countries). The availability of five hospital facilities was inversely associated with mortality: ultrasound, CT scanner, critical care unit, opioid analgesia, and oncologist. After adjustment for case-mix and country income group, hospitals with three or fewer of these facilities (62 hospitals, 1294 patients) had higher mortality compared with those with four or five (adjusted odds ratio [OR] 3·85 [95% CI 2·58–5·75]; p<0·0001), with excess mortality predominantly explained by a limited capacity to rescue following the development of major complications (63·0% vs 82·7%; OR 0·35 [0·23–0·53]; p<0·0001). Across LMICs, improvements in hospital facilities would prevent one to three deaths for every 100 patients undergoing surgery for cancer. Interpretation: Hospitals with higher levels of infrastructure and resources have better outcomes after cancer surgery, independent of country income. Without urgent strengthening of hospital infrastructure and resources, the reductions in cancer-associated mortality associated with improved access will not be realised. Funding: National Institute for Health and Care Research
    corecore