945 research outputs found

    Atomic hydrogen in the disturbed edge-on galaxy NGC 4631

    Get PDF
    We present WSRT HI observations of the nearby, disturbed, edge-on galaxy NGC 4631. A low-resolution (45 in. x 87 in.) map shows previously unknown tidal debris at large distances from the plane, and two dwarf companions. A high resolution (12 in. x 22 in.) map reveals a very disturbed gas layer in NGC 4631, with a wealth of small-scale structure. The most striking discovery is a supershell in the eastern half of the disk with a diameter of about 3 kpc, a mass of approximately 10 exp 8 solar mass and a tentative expansion velocity of 45 km/s. If the expansion is real, the energy which must have been injected by supernovae to explain the shell's current parameters is roughly 4 x 10(exp 55) ergs. Such a high energy requirement suggests an alternative formation mechanism, such as a collision with a small companion

    M51: Molecular spiral arms, GMAs and superclouds

    Get PDF
    Researchers present an aperture synthesis image of M51 in the CO 1 to 0 line at 9 seconds x 7 seconds resolution made with the Owens Valley Millimeter Interferometer. The image is a mosaic of 30 one-arcminute fields. The image shows narrow spiral arms which are coincident with the optical dust lanes and non-thermal radio emission, but are offset from the ridges of H alpha emission. Many dense concentrations of CO emission, termed Giant Molecular Associations (GMAs), are seen both along and between the arms. The typical GMA mass is about 3 times 10(exp 7) solar mass. Most of the on-arm GMAs appear to be gravitationally bound. These GMAs consist of several spectral components (Molecular Superclouds) with typical mass 10(exp 7) solar mass, which also appear to be bound. The observed streaming motions in the GMAs are consistent with density wave theory. The interarm GMAs are not gravitationally bound, and are likely to be due to a secondary compression of the density wave

    The Online Laboratory: Conducting Experiments in a Real Labor Market

    Get PDF
    Online labor markets have great potential as platforms for conducting experiments, as they provide immediate access to a large and diverse subject pool and allow researchers to conduct randomized controlled trials. We argue that online experiments can be just as valid---both internally and externally---as laboratory and field experiments, while requiring far less money and time to design and to conduct. In this paper, we first describe the benefits of conducting experiments in online labor markets; we then use one such market to replicate three classic experiments and confirm their results. We confirm that subjects (1) reverse decisions in response to how a decision-problem is framed, (2) have pro-social preferences (value payoffs to others positively), and (3) respond to priming by altering their choices. We also conduct a labor supply field experiment in which we confirm that workers have upward sloping labor supply curves. In addition to reporting these results, we discuss the unique threats to validity in an online setting and propose methods for coping with these threats. We also discuss the external validity of results from online domains and explain why online results can have external validity equal to or even better than that of traditional methods, depending on the research question. We conclude with our views on the potential role that online experiments can play within the social sciences, and then recommend software development priorities and best practices

    Star formation and the distribution of HI and infrared emission in M51

    Get PDF
    H I, infrared, CO, H alpha and beta band observations of M51, the prototypical grand-design spiral galaxy, are used to study the consequences of star formation for the distribution of H I and dust. Using the H I and CO data sets new tests of the idea that the H I is largely a dissociation product in star-forming regions were performed. It was confirmed that the H I spiral arms are generally coincident with the H II region arms, and offset downstream from the CO arms. The radial distributions of total gas, H alpha and H I surface density have a simple explanation in the dissociation picture. The distributions also demonstrate how the surface density of H I might be related to the star formation efficiency in molecule-rich galaxies. The large width of the H I regions along the arms compared to that of the H II regions can be understood in terms of a simple Stroemgren sphere calculation. The longer lifetime of the stars producing dissociating radiation vs. those producing ionizing radiation will also contribute to the greater width of the H I arms if stars are continuously forming on the arms. The lack of detailed coincidence of the H I and H II regions along the inner arms has a variety of possible explanations within the dissociation scenario. Two simple tests to probe the origin of the IRAS emission in M51 were performed
    corecore