2 research outputs found

    Identifying Children with HEreditary Coagulation disorders (iCHEC): A protocol for a prospective cohort study

    Get PDF
    Introduction It is challenging to obtain a reliable bleeding history in children who are referred for a suspected inherited bleeding disorder. Bleeding symptoms may be subtle as children face fewer haemostatic challenges compared with adults. In order to standardise bleeding histories, questionnaires have been developed, called bleeding assessment tools (BATs). Although it has been shown that high bleeding scores are associated with the presence of a mucocutaneous bleeding disorder, these BATs lack sensitivity, efficiency and flexibility in the paediatric setting. We developed a new BAT (the iCHEC (identifying Children with HEreditary Coagulation disorders) BAT) to improve on these characteristics. We aim to evaluate the diagnostic accuracy of the iCHEC BAT as a screening tool for children who are suspected for having a bleeding disorder. Methods and analysis This is a prospective cohort study. Children (age 0-18 years) suspected for a bleeding disorder who present at tertiary haematology clinics, and/or their parents/guardians, will be asked to complete the iCHEC BAT. Sensitivity was increased by inclusion of paediatric-specific bleeding symptoms and novel qualitative questions per bleeding symptom. Efficiency was improved by developing a self-administered (online) version of the questionnaire. Flexibility for changes in the bleeding phenotype of developing children was improved by including questions that define when the bleeding symptoms occurred in the past. The diagnostic accuracy of the specific bleeding items will be evaluated by receiver operator characteristic curves, using classification based on the results from laboratory assessment as the reference standard. Analysis of the discriminative power of individual bleeding symptoms will be assessed. Ethics and dissemination The study has been approved by the medical ethics committees of all participating centres in the Netherlands, Canada and the UK. All paediatric subjects and/or their parents/guardians will provide written informed consent. Study results will be submitted for publication in peer-reviewed journals

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    No full text
    Altres ajuts: Department of Health and Social Care (DHSC); Illumina; LifeArc; Medical Research Council (MRC); UKRI; Sepsis Research (the Fiona Elizabeth Agnew Trust); the Intensive Care Society, Wellcome Trust Senior Research Fellowship (223164/Z/21/Z); BBSRC Institute Program Support Grant to the Roslin Institute (BBS/E/D/20002172, BBS/E/D/10002070, BBS/E/D/30002275); UKRI grants (MC_PC_20004, MC_PC_19025, MC_PC_1905, MRNO2995X/1); UK Research and Innovation (MC_PC_20029); the Wellcome PhD training fellowship for clinicians (204979/Z/16/Z); the Edinburgh Clinical Academic Track (ECAT) programme; the National Institute for Health Research, the Wellcome Trust; the MRC; Cancer Research UK; the DHSC; NHS England; the Smilow family; the National Center for Advancing Translational Sciences of the National Institutes of Health (CTSA award number UL1TR001878); the Perelman School of Medicine at the University of Pennsylvania; National Institute on Aging (NIA U01AG009740); the National Institute on Aging (RC2 AG036495, RC4 AG039029); the Common Fund of the Office of the Director of the National Institutes of Health; NCI; NHGRI; NHLBI; NIDA; NIMH; NINDS.Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care or hospitalization after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes-including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)-in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    corecore