4 research outputs found

    Characterization of DNA Binding by the Isolated N‑Terminal Domain of Vaccinia Virus DNA Topoisomerase IB

    No full text
    Vaccinia TopIB (vTopIB), a 314-amino acid eukaryal-type IB topoisomerase, recognizes and transesterifies at the DNA sequence 5â€Č-(T/C)­CCTT↓, leading to the formation of a covalent DNA–(3â€Č-phosphotyrosyl<sup>274</sup>)–enzyme intermediate in the supercoil relaxation reaction. The C-terminal segment of vTopIB (amino acids 81–314), which engages the DNA minor groove at the scissile phosphodiester, comprises an autonomous catalytic domain that retains cleavage specificity, albeit with a cleavage site affinity lower than that of the full-length enzyme. The N-terminal domain (amino acids 1–80) engages the major groove on the DNA face opposite the scissile phosphodiester. Whereas DNA contacts of the N-terminal domain have been implicated in the DNA site affinity of vTopIB, it was not known whether the N-terminal domain per se could bind DNA. Here, using isothermal titration calorimetry, we demonstrate the ability of the isolated N-terminal domain to bind a CCCTT-containing 24-mer duplex with an apparent affinity that is ∌2.2-fold higher than that for an otherwise identical duplex in which the pentapyrimidine sequence is changed to ACGTG. Analyses of the interactions of the isolated N-terminal domain with duplex DNA via solution nuclear magnetic resonance methods are consistent with its DNA contacts observed in DNA-bound crystal structures of full-length vTopIB. The chemical shift perturbations and changes in hydrodynamic properties triggered by CCCTT DNA versus non-CCCTT DNA suggest differences in DNA binding dynamics. The importance of key N-terminal domain contacts in the context of full-length vTopIB is underscored by assessing the effects of double-alanine mutations on DNA transesterification and its sensitivity to ionic strength

    Sequential Protein Expression and Capsid Assembly in Cell: Toward the Study of Multiprotein Viral Capsids Using Solid-State Nuclear Magnetic Resonance Techniques

    No full text
    While solid-state nuclear magnetic resonance (ssNMR) has emerged as a powerful technique for studying viral capsids, current studies are limited to capsids formed from single proteins or single polyproteins. The ability to selectively label individual protein components within multiprotein viral capsids and the resulting spectral simplification will facilitate the extension of ssNMR techniques to complex viruses. <i>In vitro</i> capsid assembly by combining individually purified, labeled, and unlabeled components in NMR quantities is not a viable option for most viruses. To overcome this barrier, we present a method that utilizes sequential protein expression and in cell assembly of component-specifically labeled viral capsids in amounts suitable for NMR studies. We apply this approach to purify capsids of bacteriophage ϕ6 isotopically labeled on only one of its four constituent protein components, the NTPase P4. Using P4-labeled ϕ6 capsids and the sensitivity enhancement provided by dynamic nuclear polarization, we illustrate the utility of this method to enable ssNMR studies of complex viruses

    Docking Interactions of Hematopoietic Tyrosine Phosphatase with MAP Kinases ERK2 and p38α

    No full text
    Hematopoietic tyrosine phosphatase (HePTP) regulates orthogonal MAP kinase signaling cascades by dephosphorylating both extracellular signal-regulated kinase (ERK) and p38. HePTP recognizes a docking site (D-recruitment site, DRS) on its targets using a conserved N-terminal sequence motif (D-motif). Using solution nuclear magnetic resonance spectroscopy and isothermal titration calorimetry, we compare, for the first time, the docking interactions of HePTP with ERK2 and p38α. Our results demonstrate that ERK2–HePTP interactions primarily involve the D-motif, while a contiguous region called the kinase specificity motif also plays a key role in p38α–HePTP interactions. D-Motif–DRS interactions for the two kinases, while similar overall, do show some specific differences

    Structure of the C‑Terminal Helical Repeat Domain of Eukaryotic Elongation Factor 2 Kinase

    No full text
    Eukaryotic elongation factor 2 kinase (eEF-2K) phosphorylates its only known physiological substrate, elongation factor 2 (eEF-2), which reduces the affinity of eEF-2 for the ribosome and results in an overall reduction in protein translation rates. The C-terminal region of eEF-2K, which is predicted to contain several SEL-1-like helical repeats (SLRs), is required for the phosphorylation of eEF-2. Using solution nuclear magnetic resonance methodology, we have determined the structure of a 99-residue fragment from the extreme C-terminus of eEF-2K (eEF-2K<sub>627–725</sub>) that encompasses a region previously suggested to be essential for eEF-2 phosphorylation. eEF-2K<sub>627–725</sub> contains four helices, of which the first (αI) is flexible, and does not pack stably against the ordered helical core formed by the last three helices (αII−αIV). The helical core is structurally similar to members of the tetratricopeptide repeat (TPR) family that includes SLRs. The two penultimate helices, αII and αIII, comprise the TPR, and the last helix, αIV, appears to have a capping function. The eEF-2K<sub>627–725</sub> structure illustrates that the C-terminal deletion that was shown to abolish eEF-2 phosphorylation does so by destabilizing αIV and, therefore, the helical core. Indeed, mutation of two conserved C-terminal tyrosines (Y712A/Y713A) in eEF-2K previously shown to abolish eEF-2 phosphorylation leads to the unfolding of eEF-2K<sub>627–725</sub>. Preliminary functional analyses indicate that neither a peptide encoding a region deemed crucial for eEF-2 binding nor isolated eEF-2K<sub>627–725</sub> inhibits eEF-2 phosphorylation by full-length eEF-2K. Taken together, our data suggest that the extreme C-terminal region of eEF-2K, in isolation, does not provide a primary docking site for eEF-2
    corecore