3,087 research outputs found

    Comparison of hot-electron transmission in ferromagnetic Ni on epitaxial and polycrystalline Schottky interfaces

    Get PDF
    The hot-electron attenuation length in Ni is measured as a function of energy across two different Schottky interfaces viz. a polycrystalline Si(111)/Au and an epitaxial Si(111)/NiSi_2 interface using ballistic electron emission microscopy (BEEM). For similarly prepared Si(111) substrates and identical Ni thickness, the BEEM transmission is found to be lower for the polycrystalline interface than for the epitaxial interface. However, in both cases, the hot-electron attenuation length in Ni is found to be the same. This is elucidated by the temperature-independent inelastic scattering, transmission probabilities across the Schottky interface, and scattering at dissimilar interfaces.Comment: 5 pages, 5 figure

    Geometric discord and Measurement-induced nonlocality for well known bound entangled states

    Full text link
    We employ geometric discord and measurement induced nonlocality to quantify non classical correlations of some well-known bipartite bound entangled states, namely the two families of Horodecki's (242\otimes 4, 333\otimes 3 and 444\otimes 4 dimensional) bound entangled states and that of Bennett etal's in 333\otimes 3 dimension. In most of the cases our results are analytic and both the measures attain relatively small value. The amount of quantumness in the 444\otimes 4 bound entangled state of Benatti etal and the 282\otimes 8 state having the same matrix representation (in computational basis) is same. Coincidently, the 2m2m2m\otimes 2m Werner and isotropic states also exhibit the same property, when seen as 22m22\otimes 2m^2 dimensional states.Comment: V2: Title changed, one more state added; 11 pages (single column), 2 figures, accepted in Quantum Information Processin

    Study of Dissipative Collisions of 20^{20}Ne (\sim7-11 MeV/nucleon) + 27^{27}Al

    Full text link
    The inclusive energy distributions of complex fragments (3 \leqZ \leq 9) emitted in the reactions 20^{20}Ne (145, 158, 200, 218 MeV) + 27^{27}Al have been measured in the angular range 10o^{o} - 50o^{o}. The fusion-fission and the deep-inelastic components of the fragment yield have been extracted using multiple Gaussian functions from the experimental fragment energy spectra. The elemental yields of the fusion-fission component have been found to be fairly well exlained in the framework of standard statistical model. It is found that there is strong competition between the fusion-fission and the deep-inelastic processes at these energies. The time scale of the deep-inelastic process was estimated to be typically in the range of \sim 1021^{-21} - 1022^{-22} sec., and it was found to decrease with increasing fragment mass. The angular momentum dissipations in fully energy damped deep-inelastic process have been estimated from the average energies of the deep-inelastic components of the fragment energy spectra. It has been found that, the estimated angular momentum dissipations, for lighter fragments in particular, are more than those predicted by the empirical sticking limit.Comment: 16 pages, 9 figure

    Sharp change over from compound nuclear fission to shape dependent quasi fission

    Full text link
    Fission fragment mass distribution has been measured from the decay of 246^{246}Bk nucleus populating via two entrance channels with slight difference in mass asymmetries but belonging on either side of the Businaro Gallone mass asymmetry parameter. Both the target nuclei were deformed. Near the Coulomb barrier, at similar excitation energies the width of the fission fragment mass distribution was found to be drastically different for the 14^{14}N + 232^{232}Th reaction compared to the 11^{11}B + 235^{235}U reaction. The entrance channel mass asymmetry was found to affect the fusion process sharply.Comment: 4 pages,6 figure

    Evidence of large nuclear deformation of 32^{32}S^{*} formed in 20^{20}Ne + 12^{12}C reaction

    Get PDF
    Deformations of hot composite 32^{32}S^{*} formed in the reaction 20^{20}Ne (\sim 7 -- 10 MeV/nucleon) + 12^{12}C have been estimated from the respective inclusive α\alpha-particle evaporation spectra. The estimated deformations for 32^{32}S^{*} have been found to be much larger than the `normal' deformations of hot, rotating composites at similar excitations. This further confirms the formation of highly deformed long-lived configuration of 20^{20}Ne + 12^{12}C at high excitations (\sim 70 -- 100 MeV) -- which was recently indicated from the analysis of the complex fragment emission data for the same system. Exclusive α\alpha-particle evaporation spectra from the decay of hot composite 32^{32}S^{*} also show similar behaviour.Comment: 9 pages, 6 figure

    Characterization of fragment emission in ^{20}Ne (7 - 10 MeV/nucleon) + ^{12}C reactions

    Full text link
    The inclusive energy distributions of the complex fragments (3 \leq Z \leq 7) emitted from the bombardment of ^{12}C by ^{20}Ne beams with incident energies between 145 and 200 MeV have been measured in the angular range 10oθlab^{o} \leq \theta_{lab} \leq 50^{o}. Damped fragment yields in all the cases have been found to be the characteristic of emission from fully energy equilibrated composites. The binary fragment yields are compared with the standard statistical model predictions. Enhanced yields of entrance channel fragments (5 \leq Z \leq 7) indicate the survival of orbiting-like process in ^{20}Ne + ^{12}C system at these energies.Comment: 18 pages, 13 figure

    Chandra High Resolution X-ray Spectroscopy of AM Her

    Get PDF
    We present the results of high resolution spectroscopy of the prototype polar AM Herculis observed with Chandra High Energy Transmission Grating. The X-ray spectrum contains hydrogen-like and helium-like lines of Fe, S, Si, Mg, Ne and O with several Fe L-shell emission lines. The forbidden lines in the spectrum are generally weak whereas the hydrogen-like lines are stronger suggesting that emission from a multi-temperature, collisionally ionized plasma dominates. The helium-like line flux ratios yield a plasma temperature of 2 MK and a plasma density 1 - 9 x10^12 cm^-3, whereas the line flux ratio of Fe XXVI to Fe XXV gives an ionization temperature of 12.4 +1.1 -1.4 keV. We present the differential emission measure distribution of AM Her whose shape is consistent with the volume emission measure obtained by multi-temperature APEC model. The multi-temperature plasma model fit to the average X-ray spectrum indicates the mass of the white dwarf to be ~1.15 M_sun. From phase resolved spectroscopy, we find the line centers of Mg XII, S XVI, resonance line of Fe XXV, and Fe XXVI emission modulated by a few hundred to 1000 km/s from the theoretically expected values indicating bulk motion of ionized matter in the accretion column of AM Her. The observed velocities of Fe XXVI ions are close to the expected shock velocity for a 0.6 M_sun white dwarf. The observed velocity modulation is consistent with that expected from a single pole accreting binary system.Comment: 6 figures, AASTEX style, accepted for publication in Ap

    Lithographically and electrically controlled strain effects on anisotropic magnetoresistance in (Ga,Mn)As

    Full text link
    It has been demonstrated that magnetocrystalline anisotropies in (Ga,Mn)As are sensitive to lattice strains as small as 10^-4 and that strain can be controlled by lattice parameter engineering during growth, through post growth lithography, and electrically by bonding the (Ga,Mn)As sample to a piezoelectric transducer. In this work we show that analogous effects are observed in crystalline components of the anisotropic magnetoresistance (AMR). Lithographically or electrically induced strain variations can produce crystalline AMR components which are larger than the crystalline AMR and a significant fraction of the total AMR of the unprocessed (Ga,Mn)As material. In these experiments we also observe new higher order terms in the phenomenological AMR expressions and find that strain variation effects can play important role in the micromagnetic and magnetotransport characteristics of (Ga,Mn)As lateral nanoconstrictions.Comment: 11 pages, 4 figures, references fixe
    corecore