3 research outputs found

    Cu<sub>2</sub>Te Incorporation-Induced High Average Thermoelectric Performance in <i>p</i>‑Type Bi<sub>2</sub>Te<sub>3</sub> Alloys

    No full text
    p-Type (Bi, Sb)2Te3 alloys are attractive materials for near-room-temperature thermoelectric applications due to their high atomic masses and large spin–orbit interactions. However, their narrow band gaps originating from spin–orbit interactions lead to bipolar excitation, thereby limiting average thermoelectrics within a local temperature region (300–400 K). Here, we introduce Cu2Te into the Bi0.3Sb1.7Te3 (BST) lattice to implement high thermoelectrics over a wide temperature range. The carrier concentration is synergistically modulated via Cu substitution and the evolution of intrinsic point defects (antisites and vacancies). Furthermore, the chain effect caused by Cu2Te incorporation in BST is reflected in the improvement of the weighted mobility μW, thereby enhancing the power factor in the whole temperature range. Extrinsic and intrinsic defects due to the incorporation of Cu2Te lead to a significant reduction in the lattice thermal conductivity κL, which is further demonstrated by Raman spectroscopy. Combining κL and μW, the quantity factor B increases from 0.5 to 1 with increasing Cu2Te content due to not only the reduction of κL but also a significant improvement in electrical properties. Eventually, a peak figure of merit (zT) of ∼1.15 at 423 K is achieved in BST-Cu2Te samples, and an average figure of merit (zTave) of ∼1.12 (350–500 K) surpasses other excellent p-type Bi2Te3-based thermoelectrics. Such a synergistic effect can facilitate near-room-temperature thermoelectric applications of Bi2Te3-based alloys and provide chances for the technology space in thermoelectrics

    Promoted Na Solubility and Modified Band Structure for Achieving Exceptional Average <i>ZT</i> by Extra Mn Doping in PbTe

    No full text
    Na doping strategy provides an effective avenue to upgrade the thermoelectric performance of PbTe-based materials by optimizing electrical properties. However, the limited solubility of Na inherently restricts the efficiency of doping, resulting in a relatively low average ZT, which poses challenges for the development and application of subsequent devices. Herein, to address this issue, the introduced spontaneous Pb vacancies and additional Mn doping synergistically promote Na solubility with a further modified valence band structure. Furthermore, the induced massive point defects and multiscale microstructure greatly strengthen the scattering of phonons over a wide frequency range, leading to a remarkable ultralow lattice thermal conductivity of ∼0.42 W m–1 K–1. As a result, benefiting from the significantly enhanced Seebeck coefficient and superior thermal transports, a high peak ZT of ∼2.1 at 773 K and an excellent average ZT of ∼1.4 between 303 and 823 K are simultaneously achieved in Pb0.93Na0.04Mn0.02Te. This work proposes a simple and constructive method to obtain high-performance PbTe-based materials and is promising for the development of thermoelectric power generation devices

    Ga-Doping-Induced Carrier Tuning and Multiphase Engineering in n‑type PbTe with Enhanced Thermoelectric Performance

    No full text
    P-type lead telluride (PbTe) emerged as a promising thermoelectric material for intermediate-temperature waste-heat-energy harvesting. However, n-type PbTe still confronted with a considerable challenge owing to its relatively low figure of merit <i>ZT</i> and conversion efficiency η, limiting widespread thermoelectric applications. Here, we report that Ga-doping in n-type PbTe can optimize carrier concentration and thus improve the power factor. Moreover, further experimental and theoretical evidence reveals that Ga-doping-induced multiphase structures with nano- to micrometer size can simultaneously modulate phonon transport, leading to dramatic reduction of lattice thermal conductivity. As a consequence, a tremendous enhancement of <i>ZT</i> value at 823 K reaches ∼1.3 for n-type Pb<sub>0.97</sub>Ga<sub>0.03</sub>Te. In particular, in a wide temperature range from 323 to 823 K, the average <i>ZT</i><sub>ave</sub> value of ∼0.9 and the calculated conversion efficiency η of ∼13% are achieved by Ga doping. The present findings demonstrate the great potential in Ga-doped PbTe thermoelectric materials through a synergetic carrier tuning and multiphase engineering strategy
    corecore