98 research outputs found

    Numerical experiments on vortex ring formation

    Get PDF
    Numerical simulations are used to study the formation of vortex rings that are generated by applying a non-conservative force of long duration, simulating experimental vortex ring generation with large stroke ratio. For sufficiently long-duration forces, we investigate the extent to which properties of the leading vortex ring are invariant to the force distribution. The results confirm the existence of a universal ‘formation number’ defined by Gharib, Rambod & Shariff (1998), beyond which the leading vortex ring is separated from a trailing jet. We find that the formation process is governed by two non-dimensional parameters that are formed with three integrals of the motion (energy, circulation, and impulse) and the translation velocity of the leading vortex ring. Limiting values of the normalized energy and circulation of the leading vortex ring are found to be around 0.3 and 2.0, respectively, in agreement with the predictions of Mohseni & Gharib (1998). It is shown that under this normalization smaller variations in the circulation of the leading vortex ring are obtained than by scaling the circulation with parameters associated with the forcing. We show that by varying the spatial extent of the forcing or the forcing amplitude during the formation process, thicker rings with larger normalized circulation can be generated. Finally, the normalized energy and circulation of the leading vortex rings compare well with the same properties for vortices in the Norbury family with the same mean core radius

    Multiscale Analysis and Computation for the Three-Dimensional Incompressible Navier–Stokes Equations

    Get PDF
    In this paper, we perform a systematic multiscale analysis for the three-dimensional incompressible Navier–Stokes equations with multiscale initial data. There are two main ingredients in our multiscale method. The first one is that we reparameterize the initial data in the Fourier space into a formal two-scale structure. The second one is the use of a nested multiscale expansion together with a multiscale phase function to characterize the propagation of the small-scale solution dynamically. By using these two techniques and performing a systematic multiscale analysis, we derive a multiscale model which couples the dynamics of the small-scale subgrid problem to the large-scale solution without a closure assumption or unknown parameters. Furthermore, we propose an adaptive multiscale computational method which has a complexity comparable to a dynamic Smagorinsky model. We demonstrate the accuracy of the multiscale model by comparing with direct numerical simulations for both two- and three-dimensional problems. In the two-dimensional case we consider decaying turbulence, while in the three-dimensional case we consider forced turbulence. Our numerical results show that our multiscale model not only captures the energy spectrum very accurately, it can also reproduce some of the important statistical properties that have been observed in experimental studies for fully developed turbulent flows

    Numerical Simulation of Sound Radiated from a Turbulent Vortex Ring

    Get PDF
    The acoustic field radiated by a turbulent vortex ring is studied. Direct Numerical Simulations (DNS) of the fully compressible, three-dimensional Navier-Stokes equations are used to generate an axisymmetric vortex ring to which 3D stochastic disturbances are added. The disturbances cause instability and turbulent transition of the vortex ring. Detailed information about temporal evolution of sound pressure level, spectrum and directivity associated with each mode is investigated. The peak frequency agrees well with experiments, and the directivity of each azimuthal mode agrees well with predictions of vortex sound theory. Based on the self-similar decay of the turbulent near field, the selfsimilar decay of the sound field is investigated. We also explore the connections with jet noise by modeling the jet as a de-correlated train of vortex rings

    Multiscale analysis in Lagrangian formulation for the 2-D incompressible Euler equation

    Get PDF
    We perform a systematic multiscale analysis for the 2-D incompressible Euler equation with rapidly oscillating initial data using a Lagrangian approach. The Lagrangian formulation enables us to capture the propagation of the multiscale solution in a natural way. By making an appropriate multiscale expansion in the vorticity-stream function formulation, we derive a well-posed homogenized equation for the Euler equation. Based on the multiscale analysis in the Lagrangian formulation, we also derive the corresponding multiscale analysis in the Eulerian formulation. Moreover, our multiscale analysis reveals some interesting structure for the Reynolds stress term, which provides a theoretical base for establishing systematic multiscale modeling of 2-D incompressible flow

    Links Assignment Scheme based on Potential Edges Importance in Dual-layer Wavelength Routing Optical Satellite Networks

    Full text link
    With the development of the massive satellite constellation and the on-orbit laser-based communication equipment, the wavelength routing optical satellite network (WROSN) becomes a potential solution for on-orbit, high-capacity, and high-speed communication. Since the inter-satellite links (ISLs) are time-varying, one of the fundamental considerations in the construction of the WROSN is assigning limited laser communication terminals for each satellite to establish ISLs with the visible satellites. Therefore, we propose a links assignment scheme (LAS) based on the potential edges importance matrix (PEIM) algorithm to construct a temporarily stable topology of the ISLs for a dual-layer constellation. The simulation results showed that the LAS based on the PEIM algorithm is better than LAS based on the random or Greedy algorithm in terms of node-to-node distance, node pair connectivity, wavelength demand, and transmission delay. The node pair connectivity and wavelength demand in WROSN is a trade-off problem. The research in this paper also brings a novel method for reduction of the cost of the on-board resources, that is through designing topology of the ISLs with links assignment algorithm.Comment: This is the manuscript version that was submitted to the International Journal of Satellite Communications and Networking (SAT-23-0018

    Multiscale computation of isotropic homogeneous turbulent flow

    Get PDF
    In this article we perform a systematic multi-scale analysis and computation for incompressible Euler equations and Navier-Stokes Equations in both 2D and 3D. The initial condition for velocity field has multiple length scales. By reparameterizing them in the Fourier space, we can formally organize the initial condition into two scales with the fast scale component being periodic. By making an appropriate multiscale expansion for the velocity field, we show that the two-scale structure is preserved dynamically. Moreover, we derive a well-posed homogenized equation for the incompressible Euler equations in the Eulerian formulations. Numerical experiments are presented to demonstrate that the homogenized equations indeed capture the correct averaged solution of the incompressible Euler and Navier Stokes equations. Moreover, our multiscale analysis reveals some interesting structure for the Reynolds stress terms, which provides a theoretical base for establishing an effective LES type of model for incompressible fluid flows

    Point-aware Interaction and CNN-induced Refinement Network for RGB-D Salient Object Detection

    Full text link
    By integrating complementary information from RGB image and depth map, the ability of salient object detection (SOD) for complex and challenging scenes can be improved. In recent years, the important role of Convolutional Neural Networks (CNNs) in feature extraction and cross-modality interaction has been fully explored, but it is still insufficient in modeling global long-range dependencies of self-modality and cross-modality. To this end, we introduce CNNs-assisted Transformer architecture and propose a novel RGB-D SOD network with Point-aware Interaction and CNN-induced Refinement (PICR-Net). On the one hand, considering the prior correlation between RGB modality and depth modality, an attention-triggered cross-modality point-aware interaction (CmPI) module is designed to explore the feature interaction of different modalities with positional constraints. On the other hand, in order to alleviate the block effect and detail destruction problems brought by the Transformer naturally, we design a CNN-induced refinement (CNNR) unit for content refinement and supplementation. Extensive experiments on five RGB-D SOD datasets show that the proposed network achieves competitive results in both quantitative and qualitative comparisons.Comment: Accepted by ACM MM 202

    Rice consumption and cancer incidence in US men and women

    Get PDF
    While both the 2012 and 2014 Consumer Reports concerned arsenic levels in US rice, no previous study has evaluated long-term consumption of total rice, white rice and brown rice in relation to risk of developing cancers. We investigated this in the female Nurses' Health Study (1984-2010), and Nurses' Health Study II (1989-2009), and the male Health Professionals Follow-up Study (1986-2008), which included a total of 45,231 men and 160,408 women, free of cancer at baseline. Validated food frequency questionnaires were used to measure rice consumption at baseline and repeated almost every 4 years thereafter. We employed Cox proportional hazards regression model to estimate multivariable relative risks (RRs) and 95% confidence intervals (95% CIs). During up to 26 years of follow-up, we documented 31,655 incident cancer cases (10,833 in men and 20,822 in women). Age-adjusted results were similar to multivariable-adjusted results. Compared to participants with less than one serving per week, the multivariable RRs of overall cancer for individuals who ate at least five servings per week were 0.97 for total rice (95% CI: 0.85-1.07), 0.87 for white rice (95% CI: 0.75-1.01), and 1.17 for brown rice (95% CI: 0.90-1.26). Similar non-significant associations were observed for specific sites of cancers including prostate, breast, colon and rectum, melanoma, bladder, kidney, and lung. Additionally, the null associations were observed among European Americans and non-smokers, and were not modified by BMI. Long-term consumption of total rice, white rice or brown rice was not associated with risk of developing cancer in US men and women

    Deteriorated regional calf microcirculation measured by contrast-free MRI in patients with diabetes mellitus and relation with physical activity

    Get PDF
    OBJECTIVE: To evaluate regional calf muscle microcirculation in people with diabetes mellitus (DM) with and without foot ulcers, compared to healthy control people without DM, using contrast-free magnetic resonance imaging methods. METHODS: Three groups of subjects were recruited: non-DM controls, DM, and DM with foot ulcers (DM + ulcer), all with ankle brachial index (ABI) \u3e 0.9. Skeletal muscle blood flow (SMBF) and oxygen extraction fraction (SMOEF) in calf muscle were measured at rest and during a 5-min isometric ankle plantarflexion exercise. Subjects completed the Yale physical activity survey. RESULTS: The exercise SMBF (ml/min/100 g) of the medial gastrocnemius muscle were progressively impaired: 63.7 ± 18.9 for controls, 42.9 ± 6.7 for DM, and 36.2 ± 6.2 for DM + ulcer, CONCLUSIONS: Contrast-free MR imaging identified progressively impaired regional microcirculation in medial gastrocnemius muscles of people with DM with and without foot ulcers. Exercise SMBF in the medial gastrocnemius muscle was the most sensitive index and was associated with HbA1c. Lower exercise SMBF in the soleus muscle was associated with lower Yale score

    Case report: Isolated immunoglobulin G4-related sclerosing cholangitis misdiagnosed as hilar cholangiocarcinoma

    Get PDF
    BackgroundImmunoglobulin G4-related sclerosing cholangitis (IgG4-SC) is frequently accompanied with type 1 autoimmune pancreatitis (AIP). Isolated IgG4-SC which is not accompanied with AIP is uncommon in clinical practice, and its manifestations are similar to those of hilar cholangiocarcinoma.Case presentationA 55-year-old male presented with persistent aggravation of icteric sclera and skin. He was initially diagnosed with hilar cholangiocarcinoma and underwent surgery. However, positive IgG4 plasma cells were found in the surgical specimens. Thus, a pathological diagnosis of IgG4-SC was established. After that, steroid therapy was given and initially effective. But he was steroid dependent, and then received rituximab therapy twice. Unfortunately, the response to rituximab therapy was poor.ConclusionIt is crucial to differentiate isolated IgG4-SC from hilar cholangiocarcinoma to avoid unnecessary surgery. Future studies should further explore effective treatment strategy in patients who do not respond to steroids therapy. It is also required to develop novel and accurate diagnostic approaches to avoid unnecessary surgical procedures
    • …
    corecore