5 research outputs found

    Inline Milk Lactose Concentration as Biomarker of the Health Status and Reproductive Success in Dairy Cows

    No full text
    In this study, cow reticulorumen content pH and temperature together with the activity were registered using smaXtec boluses, specially designed for animal care. Body weight, rumination time, milk fat/protein ratio, milk yield, milk lactose, milk electrical conductivity, milk somatic cell count and consumption of concentrated feed were registered by Lely Astronaut® A3 milking robots. The cows in this study were assigned into two groups according to the milk lactose concentration: group 1—milk lactose n = 20), group 2—milk lactose ≥ 4.70% (n = 15). The following cows were further classified according to milk fat and protein ratio: F/P 1.2 (class 3). According to our results, we can conclude that inline registered milk lactose concentration can be used to indicate the health status and reproductive success of fresh dairy cows. Cows with an increased lactose concentration (≥4.70%) showed more activity (54.47%) and had less risk of mastitis (determined by lower milk electrical conductivity (EC) and somatic cell counts (SCC)) and metabolic disorders, determined by milk F/P. A higher glucose concentration was also apparent in the cows with higher lactose concentration. Registered lower levels of milk lactose can be used for early identification of metabolic disorders and mastitis (set at milk SCC ≥ 100 thousand/mL). Lactose levels in cows’ milk were positively associated with their reproductive success

    Antimicrobial and Mycotoxin Reducing Properties of Lactic Acid Bacteria and Their Influence on Blood and Feces Parameters of Newborn Calves

    No full text
    The aim of this study was to evaluate the influence of in acid whey (AW) multiplied Lactiplantibacillusplantarum LUHS135 (L.pl135), Lacticaseibacillus paracasei LUHS244 (L.pc244), and theirbiomass combination on newborn calves’ feces and blood parameters. Additionally, the antimicrobial and mycotoxin-reducing properties and the resistance to antibiotics of the tested lactic acid bacteria(LAB) strains were analyzed. In order to ensure effective biomass growth in AW, technological parameters for the supplement preparation were selected. Control calves were fed with a standard milk replacer (SMR) and treated groups (from the 2nd day of life until the 14th day) were supplemented with 50 mL of AWL.pl135, AWL.pc244, and AWL.pl135 L.pc244 (25 mL AWL.pl135 + 25 mL AWL.pc244) in addition to SMR. It was established that L.pl135 and L.pc244 possess broad antimicrobial activities, are non-resistant to the tested antibiotics, and reduce mycotoxin concentrations in vitro. The optimal duration established for biomass growth was 48 h (LAB count higher than 7.00 log10 CFU mL-1 was found after 48 h of AW fermentation). It was established that additional feeding of newborn calves with AWL.pl135, AWL.pc244, and AWL.pl135 L.pc244 increased lactobacilli (on average by 7.4%), and AWL.pl135 and AWL.pc244 reduced the numbers of Enterobacteriaceae in calves’ feces. The tested supplements also reduced the lactate concentration (on average, by 42.5%) in calves’ blood. Finally, the tested supplements had a positive influence on certain health parameters of newborn calves; however, further research is needed to validate the mechanisms of the beneficial effects

    The Association between Blood Î’-Hydroxybutyric Acid Concentration in the Second Week of Lactation and Reproduction Performance of Lithuanian Black and White Cows

    Get PDF
    Hyperketonemia is a very common metabolic state in dairy cows, which result in lower milk production, impaired fertility, and increased frequency of other diseases. In this study, we aimed to determine the influence of season, parity, and milk yield of cows on beta-hydroxybutyrate (BHB) concentration in the second week of lactation (WK 2) and establish the relationship between BHB concentration in WK 2 and reproduction performance traits such as insemination rate and first insemination day of Lithuanian Black and White dairy cows. The study included clinically healthy Lithuanian Black and White cows (n = 692). Blood BHB concentration was measured using capillary blood samples collected after morning milking when cows were 7–10 DIM. The impact of WK 2 blood BHB concentration on the insemination rate and first insemination day were investigated. The effect of BHB was evaluated according to the season, parity, and milk yield per lactation (305 DIM). Significant differences were observed in BHB concentration in WK 2 due to season and parity, but no statistically significant differences were observed for milk yields (305 d). Increased blood BHB concentration in WK 2 negatively affected insemination rate (p < 0.001) and first insemination day (p < 0.001). The study findings indicate that BHB concentration in WK 2 depends on season and parity, while the milk yield is not associated with BHB concentration. High BHB concentration in WK 2 increases insemination rate and delays the first insemination day for high milk-yielding Lithuanian Black and White dairy cows

    Inline Milk Lactose Concentration as Biomarker of the Health Status and Reproductive Success in Dairy Cows

    No full text
    In this study, cow reticulorumen content pH and temperature together with the activity were registered using smaXtec boluses, specially designed for animal care. Body weight, rumination time, milk fat/protein ratio, milk yield, milk lactose, milk electrical conductivity, milk somatic cell count and consumption of concentrated feed were registered by Lely Astronaut&reg; A3 milking robots. The cows in this study were assigned into two groups according to the milk lactose concentration: group 1&mdash;milk lactose &lt; 4.70% (n = 20), group 2&mdash;milk lactose &ge; 4.70% (n = 15). The following cows were further classified according to milk fat and protein ratio: F/P &lt; 1.2 (class 1), F/P = 1.2 (class 2) and F/P &gt; 1.2 (class 3). According to our results, we can conclude that inline registered milk lactose concentration can be used to indicate the health status and reproductive success of fresh dairy cows. Cows with an increased lactose concentration (&ge;4.70%) showed more activity (54.47%) and had less risk of mastitis (determined by lower milk electrical conductivity (EC) and somatic cell counts (SCC)) and metabolic disorders, determined by milk F/P. A higher glucose concentration was also apparent in the cows with higher lactose concentration. Registered lower levels of milk lactose can be used for early identification of metabolic disorders and mastitis (set at milk SCC &ge; 100 thousand/mL). Lactose levels in cows&rsquo; milk were positively associated with their reproductive success
    corecore