22 research outputs found

    An electrical probe of the phonon mean-free path spectrum

    Full text link
    Most studies of the mean-free path accumulation function (MFPAF) rely on optical techniques to probe heat transfer at length scales on the order of the phonon mean-free path. In this paper, we propose and implement a purely electrical probe of the MFPAF that relies on photo-lithographically defined heater-thermometer separation to set the length scale. An important advantage of the proposed technique is its insensitivity to the thermal interfacial impedance and its compatibility with a large array of temperature-controlled chambers that lack optical ports. Detailed analysis of the experimental data based on the enhanced Fourier law (EFL) demonstrates that heat-carrying phonons in gallium arsenide have a much wider mean-free path spectrum than originally thought

    In Silico identification of candidate genes involved for grain Fe and Zn concentration in sorghum using reported cereals gene homologs

    Get PDF
    Sorghum is one of the top 10 crops that feed the world. It is a good source of energy, protein, carbohydrate, vitamins and minerals including the trace elements. It is one of the cheapest and sustainable options to combat the micronutrient malnutrition, particularly Fe and Zn in predominantly sorghum eating populations. Identification of genes governing grain Fe and Zn concentration in sorghum is of interest. Earlier studies on other cereals showed role of number of genes for grain Fe and Zn homeostasis and uptake, transport and loading, but so far no reports available on genomic regions/ QTLs and candidate genes governing sorghum grain Fe and Zn content in sorghum

    Exploiting rice–sorghum synteny for targeted development of EST-SSRs to enrich the sorghum genetic linkage map

    Get PDF
    The sequencing and detailed comparative functional analysis of genomes of a number of select botanical models open new doors into comparative genomics among the angiosperms, with potential benefits for improvement of many orphan crops that feed large populations. In this study, a set of simple sequence repeat (SSR) markers was developed by mining the expressed sequence tag (EST) database of sorghum. Among the SSR-containing sequences, only those sharing considerable homology with rice genomic sequences across the lengths of the 12 rice chromosomes were selected. Thus, 600 SSR-containing sorghum EST sequences (50 homologous sequences on each of the 12 rice chromosomes) were selected, with the intention of providing coverage for corresponding homologous regions of the sorghum genome. Primer pairs were designed and polymorphism detection ability was assessed using parental pairs of two existing sorghum mapping populations. About 28% of these new markers detected polymorphism in this 4-entry panel. A subset of 55 polymorphic EST-derived SSR markers were mapped onto the existing skeleton map of a recombinant inbred population derived from cross N13 × E 36-1, which is segregating for Striga resistance and the stay-green component of terminal drought tolerance. These new EST-derived SSR markers mapped across all 10 sorghum linkage groups, mostly to regions expected based on prior knowledge of rice–sorghum synteny. The ESTs from which these markers were derived were then mapped in silico onto the aligned sorghum genome sequence, and 88% of the best hits corresponded to linkage-based positions. This study demonstrates the utility of comparative genomic information in targeted development of markers to fill gaps in linkage maps of related crop species for which sufficient genomic tools are not availabl

    A Generalized Enhanced Fourier Law

    No full text
    A generalized enhanced Fourier law (EFL) that accounts for quasiballistic phonon transport effects in a formulation entirely in terms of physical observables is derived from the Boltzmann transport equation. It generalizes the previously reported EFL from a gray phonon population to an arbitrary quasi-ballistic phonon mode population, the chief advantage being its formulation in terms of observables like the heat flux and temperature, in a manner akin to the Fourier law albeit rigorous enough to describe quasi-ballistic phonon transport
    corecore