24 research outputs found

    Collagen-mimetic peptide-modifiable hydrogels for articular cartilage regeneration

    Get PDF
    Regenerative medicine strategies for restoring articular cartilage face significant challenges to recreate the complex and dynamic biochemical and biomechanical functions of native tissues. As an approach to recapitulate the complexity of the extracellular matrix, collagen-mimetic proteins offer a modular template to incorporate bioactive and biodegradable moieties into a single construct. We modified a Streptococcal collagen-like 2 protein with hyaluronic acid (HA) or chondroitin sulfate (CS)-binding peptides and then cross-linked with a matrix metalloproteinase 7 (MMP7)-sensitive peptide to form biodegradable hydrogels. Human mesenchymal stem cells (hMSCs) encapsulated in these hydrogels exhibited improved viability and significantly enhanced chondrogenic differentiation compared to controls that were not functionalized with glycosaminoglycan-binding peptides. Hydrogels functionalized with CS-binding peptides also led to significantly higher MMP7 gene expression and activity while the HA-binding peptides significantly increased chondrogenic differentiation of the hMSCs. Our results highlight the potential of this novel biomaterial to modulate cell-mediated processes and create functional tissue engineered constructs for regenerative medicine applications

    Temporally degradable collagen–mimetic hydrogels tuned to chondrogenesis of human mesenchymal stem cells

    Get PDF
    Tissue engineering strategies for repairing and regenerating articular cartilage face critical challenges to recapitulate the dynamic and complex biochemical microenvironment of native tissues. One approach to mimic the biochemical complexity of articular cartilage is through the use of recombinant bacterial collagens as they provide a well-defined biological 'blank template' that can be modified to incorporate bioactive and biodegradable peptide sequences within a precisely defined three-dimensional system. We customized the backbone of a Streptococcal collagen-like 2 (Scl2) protein with heparin-binding, integrin-binding, and hyaluronic acid-binding peptide sequences previously shown to modulate chondrogenesis and then cross-linked the recombinant Scl2 protein with a combination of matrix metalloproteinase 7 (MMP7)- and aggrecanase (ADAMTS4)-cleavable peptides at varying ratios to form biodegradable hydrogels with degradation characteristics matching the temporal expression pattern of these enzymes in human mesenchymal stem cells (hMSCs) during chondrogenesis. hMSCs encapsulated within the hydrogels cross-linked with both degradable peptides exhibited enhanced chondrogenic characteristics as demonstrated by gene expression and extracellular matrix deposition compared to the hydrogels cross-linked with a single peptide. Additionally, these combined peptide hydrogels displayed increased MMP7 and ADAMTS4 activities and yet increased compression moduli after 6 weeks, suggesting a positive correlation between the degradation of the hydrogels and the accumulation of matrix by hMSCs undergoing chondrogenesis. Our results suggest that including dual degradation motifs designed to respond to enzymatic activity of hMSCs going through chondrogenic differentiation led to improvements in chondrogenesis. Our hydrogel system demonstrates a bimodal enzymatically degradable biological platform that can mimic native cellular processes in a temporal manner. As such, this novel collagen-mimetic protein, cross-linked via multiple enzymatically degradable peptides, provides a highly adaptable and well defined platform to recapitulate a high degree of biological complexity, which could be applicable to numerous tissue engineering and regenerative medicine applications

    Formation of multimers of bacterial collagens through introduction of specific sites for oxidative crosslinking

    Get PDF
    National audienceLimiter la fatigue et la corrosion des piÚces est possible grùce à une nitruration. Des contraintes résiduelles en découlent. Le rÎle de la diffusion du carbone sur le développement de ces contraintes a été étudié sur un acier modÚle Fe-3%m.Cr-0.35%m.C

    A highly elastic tissue sealant based on photopolymerised gelatin

    No full text
    Gelatin is widely used as a medical biomaterial because it is readily available, cheap, biodegradable and demonstrates favourable biocompatibility. Many applications require stabilisation of the biomaterial by chemical crosslinking, and this often involves derivatisation of the protein or treatment with cytotoxic crosslinking agents. We have previously shown that a facile photochemical method, using blue light, a ruthenium catalyst and a persulphate oxidant, produces covalent di-tyrosine crosslinks in resilin and fibrinogen to form stable hydrogel biomaterials. Here we show that various gelatins can also be rapidly crosslinked to form highly elastic (extension to break >650%) and adhesive (stress at break >100. kPa) biomaterials. Although the method does not require derivatisation of the protein, we show that when the phenolic (tyrosine-like) content of gelatin is increased, the crosslinked material becomes resistant to swelling, yet retains considerable elasticity and high adhesive strength. The reagents are not cytotoxic at the concentration used in the photopolymerisation reaction. When tested in vivo in sheep lung, the photopolymerised gelatin effectively sealed a wound in lung tissue from blood and air leakage, was not cytotoxic and did not produce an inflammatory response. The elastic properties, thermal stability, speed of curing and high tissue adhesive strength of this photopolymerised gelatin, offer considerable improvement over current surgical tissue sealants
    corecore