22 research outputs found

    EspA Acts as a Critical Mediator of ESX1-Dependent Virulence in Mycobacterium tuberculosis by Affecting Bacterial Cell Wall Integrity

    Get PDF
    Mycobacterium tuberculosis (Mtb) requires the ESX1 specialized protein secretion system for virulence, for triggering cytosolic immune surveillance pathways, and for priming an optimal CD8+ T cell response. This suggests that ESX1 might act primarily by destabilizing the phagosomal membrane that surrounds the bacterium. However, identifying the primary function of the ESX1 system has been difficult because deletion of any substrate inhibits the secretion of all known substrates, thereby abolishing all ESX1 activity. Here we demonstrate that the ESX1 substrate EspA forms a disulfide bonded homodimer after secretion. By disrupting EspA disulfide bond formation, we have dissociated virulence from other known ESX1-mediated activities. Inhibition of EspA disulfide bond formation does not inhibit ESX1 secretion, ESX1-dependent stimulation of the cytosolic pattern receptors in the infected macrophage or the ability of Mtb to prime an adaptive immune response to ESX1 substrates. However, blocking EspA disulfide bond formation severely attenuates the ability of Mtb to survive and cause disease in mice. Strikingly, we show that inhibition of EspA disulfide bond formation also significantly compromises the stability of the mycobacterial cell wall, as does deletion of the ESX1 locus or individual components of the ESX1 system. Thus, we demonstrate that EspA is a major determinant of ESX1-mediated virulence independent of its function in ESX1 secretion. We propose that ESX1 and EspA play central roles in the virulence of Mtb in vivo because they alter the integrity of the mycobacterial cell wall

    Efficacy of fungicides on mycelial growth of diatrypaceous fungi associated with grapevine trunk disease

    No full text
    Several species of Diatrypaceae have been recently isolated from the wood of cankered grapevines in several regions of the world and shown to be pathogenic with varying degrees of virulence when inoculated in stems of potted vines. Existing management strategies have focussed on the evelopment of procedures and products to prevent or reduce Eutypa lata infection. The best method to prevent infection is by applying fungicides to wounds, but there are few registered chemicals for any of the diatrypaceous fungi in Australia. Six selected fungicides were evaluated in vitro for their efficacy in reducing mycelial growth of Eutypa lata, Cryptovalsa ampelina, Diatrypella vulgaris, Eutypa leptoplaca, Eutypella citricola and Eutypella microtheca. Carbendazim, fluazinam, tebuconazole, and prothioconazole + tebuconazole were effective at inhibiting mycelial growth of all Diatrypaceae spp. tested. Pyraclostrobin reduced colony diameter of most of the fungal species by 50% or more. Pyrimethanil was ineffective at reducing mycelial growth of these pathogens. Five of the six fungicides evaluated in this study have shown efficacy in vitro against Diatrypaceae spp. and require further evaluation in the field. This study represents the first approach for fungicide evaluation against mycelial growth of diatrypaceous fungi, other than Ea. lata. It contributes to the development of integrated management strategies for grapevine trunk diseases. © 2011 Australasian Plant Pathology Society Inc.Peer Reviewe
    corecore