9 research outputs found

    First insight into structure-activity relationships of selective meprin beta inhibitors

    No full text
    The astacin proteases meprin a and beta are emerging drug targets for treatment of disorders such as kidney failure, fibrosis or inflammatory bowel disease. However, there are only few inhibitors of both proteases reported to date. Starting from NNGH as lead structure, a detailed elaboration of the structure-activity relationship of meprin beta inhibitors was performed, leading to compounds with activities in the lower nanomolar range. Considering the preference of meprin 0 for acidic residues in the P1' position, the compounds were optimized. Acidic modifications induced potent inhibition and >100-fold selectivity over other structurally related metalloproteases such as MMP-2 or ADAM10

    Structure-activity relationships of benzimidazole-based glutaminyl cyclase inhibitors featuring a heteroaryl scaffold

    No full text
    Glutaminyl cyclase (hQC) has emerged as a new potential target for the treatment of Alzheimer's disease (AD). The inhibition of hQC prevents of the formation of the A3(pE)-40,42 species which were shown to be of elevated neurotoxicity and are likely to act as a seeding core, leading to an accelerated formation of A-oligomers and fibrils. This work presents a new class of inhibitors of hQC, resulting from a pharmacophore-based screen. Hit molecules were identified, containing benzimidazole as the metal binding group connected to 1,3,4-oxadiazole as the central scaffold. The subsequent optimization resulted in benzimidazolyl-1,3,4-thiadiazoles and -1,2,3-triazoles with an inhibitory potency in the nanomolar range. Further investigation into the potential binding mode of the new compound classes combined molecular docking and site directed mutagenesis studies

    Azide-modified membrane lipids: Synthesis, properties, and reactivity

    No full text
    In the present work, we describe the synthesis and the temperature-dependent behavior of photoreactive membrane lipids as well as their capability to study peptide/lipid interactions. The modified phospholipids contain an azide group either in the middle part or at the end of an alkyl chain and also differ in the linkage (ester vs ether) of the second alkyl chain. The temperature-dependent aggregation behavior of the azidolipids was studied using differential scanning calorimetry (DSC), Fourier-transform infrared (FTIR) spectroscopy, and small-angle X-ray scattering (SAXS). Aggregate structures were visualized by stain and cryo transmission electron microscopy (TEM) and were further characterized by dynamic light scattering (DLS). We show that the position of the azide group and the type of linkage of the alkyl chain at the sn-2 position of the glycerol influences the type of aggregates formed as well as their long-term stability: P10AzSPC and r12AzSHPC show the formati on of extrudable liposomes, which are stable in size during storage. In contrast, azidolipids that carry a terminal azido moiety either form extrudable liposomes, which show time-dependent vesicle fusion (P15AzPdPC), or self-assemble in large sheet-like, nonextrudable aggregates (r15AzPdHPC) where the lipid molecules are arranged in an interdigitated orientation at temperatures below Tm (LβI phase). Finally, a P10AzSPC:DMPC mixture was used for photochemically induced cross-linking experiments with a transmembrane peptide (WAL-peptide) to demonstrate the applicability of the azidolipids for the analysis of peptide/lipid interactions. The efficiency of photo-cross-linking was monitored by attenuated total reflection infrared (ATR-IR) spectroscopy and mass spectrometry (MS)

    Benzimidazole-derived Compounds Designed for Different Targets of Alzheimer’s Disease

    No full text

    Pharmacogenomics of Alzheimer’s Disease: Novel Therapeutic Strategies for Drug Development

    No full text
    corecore