50 research outputs found

    A Comparison of Four Treatments for Generalized Convulsive Status Epilepticus

    Get PDF
    ABSTRACT Background and Methods Although generalized convulsive status epilepticus is a life-threatening emergency, the best initial drug treatment is uncertain. We conducted a five-year randomized, doubleblind, multicenter trial of four intravenous regimens: diazepam (0.15 mg per kilogram of body weight) followed by phenytoin (18 mg per kilogram), lorazepam (0.1 mg per kilogram), phenobarbital (15 mg per kilogram), and phenytoin (18 mg per kilogram). Patients were classified as having either overt generalized status epilepticus (defined as easily visible generalized convulsions) or subtle status epilepticus (indicated by coma and ictal discharges on the electroencephalogram, with or without subtle convulsive movements such as rhythmic muscle twitches or tonic eye deviation). Treatment was considered successful when all motor and electroencephalographic seizure activity ceased within 20 minutes after the beginning of the drug infusion and there was no return of seizure activity during the next 40 minutes. Analyses were performed with data on only the 518 patients with verified generalized convulsive status epilepticus as well as with data on all 570 patients who were enrolled. Results Three hundred eighty-four patients had a verified diagnosis of overt generalized convulsive status epilepticus. In this group, lorazepam was successful in 64.9 percent of those assigned to receive it, phenobarbital in 58.2 percent, diazepam and phenytoin in 55.8 percent, and phenytoin in 43.6 percent (P=0.02 for the overall comparison among the four groups). Lorazepam was significantly superior to phenytoin in a pairwise comparison (P=0.002). Among the 134 patients with a verified diagnosis of subtle generalized convulsive status epilepticus, no significant differences among the treatments were detected (range of success rates, 7.7 to 24.2 percent). In an intention-to-treat analysis, the differences among treatment groups were not significant, either among the patients with overt status epilepticus (P=0.12) or among those with subtle status epilepticus (P=0.91). There were no differences among the treatments with respect to recurrence during the 12- hour study period, the incidence of adverse reactions, or the outcome at 30 days. Conclusions As initial intravenous treatment for overt generalized convulsive status epilepticus, lorazepam is more effective than phenytoin. Although lorazepam is no more efficacious than phenobarbital or diazepam and phenytoin, it is easier to use. (N Engl J Med 1998;339:792-8.

    Lower limb strength training in children with cerebral palsy – a randomized controlled trial protocol for functional strength training based on progressive resistance exercise principles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Until recently, strength training in children with cerebral palsy (CP) was considered to be inappropriate, because it could lead to increased spasticity or abnormal movement patterns. However, the results of recent studies suggest that progressive strength training can lead to increased strength and improved function, but low methodological quality and incomplete reporting on the training protocols hampers adequate interpretation of the results. This paper describes the design and training protocol of a randomized controlled trial to assess the effects of a school-based progressive functional strength training program for children with CP.</p> <p>Methods/Results</p> <p>Fifty-one children with Gross Motor Function Classification Systems levels I to III, aged of 6 to 13 years, were recruited. Using stratified randomization, each child was assigned to an intervention group (strength training) or a control group (usual care). The strength training was given in groups of 4–5 children, 3 times a week, for a period of 12 weeks. Each training session focussed on four exercises out of a 5-exercise circuit. The training load was gradually increased based on the child's maximum level of strength, as determined by the 8 Repetition Maximum (8 RM). To evaluate the effectiveness of the training, all children were evaluated before, during, directly after, and 6 weeks after the intervention period. Primary outcomes in this study were gross motor function (measured with the Gross Motor Function Measure and functional muscle strength tests) and walking ability (measured with the 10-meter, the 1-minute and the timed stair test). Secondary outcomes were lower limb muscle strength (measured with a 6 RM test, isometric strength tests, and a sprint capacity test), mobility (measured with a mobility questionnaire), and sport activities (measured with the Children's Assessment of Participation and Enjoyment). Spasticity and range of motion were assessed to evaluate any adverse events.</p> <p>Conclusion</p> <p>Randomized clinical trials are considered to present the highest level of evidence. Nevertheless, it is of utmost importance to report on the design, the applied evaluation methods, and all elements of the intervention, to ensure adequate interpretation of the results and to facilitate implementation of the intervention in clinical practice if the results are positive.</p> <p>Trial Registration</p> <p>Trial Register NTR1403</p

    HER2-enriched subtype and novel molecular subgroups drive aromatase inhibitor resistance and an increased risk of relapse in early ER+/HER2+ breast cancer

    Get PDF
    BACKGROUND: Oestrogen receptor positive/ human epidermal growth factor receptor positive (ER+/HER2+) breast cancers (BCs) are less responsive to endocrine therapy than ER+/HER2- tumours. Mechanisms underpinning the differential behaviour of ER+HER2+ tumours are poorly characterised. Our aim was to identify biomarkers of response to 2 weeks’ presurgical AI treatment in ER+/HER2+ BCs. METHODS: All available ER+/HER2+ BC baseline tumours (n=342) in the POETIC trial were gene expression profiled using BC360™ (NanoString) covering intrinsic subtypes and 46 key biological signatures. Early response to AI was assessed by changes in Ki67 expression and residual Ki67 at 2 weeks (Ki672wk). Time-To-Recurrence (TTR) was estimated using Kaplan-Meier methods and Cox models adjusted for standard clinicopathological variables. New molecular subgroups (MS) were identified using consensus clustering. FINDINGS: HER2-enriched (HER2-E) subtype BCs (44.7% of the total) showed poorer Ki67 response and higher Ki672wk (p<0.0001) than non-HER2-E BCs. High expression of ERBB2 expression, homologous recombination deficiency (HRD) and TP53 mutational score were associated with poor response and immune-related signatures with High Ki672wk. Five new MS that were associated with differential response to AI were identified. HER2-E had significantly poorer TTR compared to Luminal BCs (HR 2.55, 95% CI 1.14–5.69; p=0.0222). The new MS were independent predictors of TTR, adding significant value beyond intrinsic subtypes. INTERPRETATION: Our results show HER2-E as a standardised biomarker associated with poor response to AI and worse outcome in ER+/HER2+. HRD, TP53 mutational score and immune-tumour tolerance are predictive biomarkers for poor response to AI. Lastly, novel MS identify additional non-HER2-E tumours not responding to AI with an increased risk of relapse

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Integer programming approaches to capacitated concave cost production planning problems

    No full text
    Ph.D.Ronald L. Rardi

    Application of volumetric MR spectroscopic imaging for localization of neocortical epilepsy

    No full text
    PURPOSE: The aim of this study was to evaluate volumetric proton magnetic resonance spectroscopic imaging (MRSI) for localization of epileptogenic foci in neocortical epilepsy. METHODS: Twenty-five subjects reporting seizures considered to be of neocortical origin were recruited to take part in a 3-Tesla MR study that included high-resolution structural MRI and a whole-brain MRSI acquisition. Using a fully-automated MRSI processing protocol, maps for signal-intensity normalized N-Acetylaspartate (NAA), creatine, and choline were created, together with the relative volume fraction of grey-matter, white-matter, and CSF within each MRSI voxel. Analyses were performed using visual observation of the metabolite and metabolite ratio maps; voxel-based calculation of differences in these metabolite maps relative to normal controls; comparison of average grey- and white-matter metabolite values over each lobar volume; and examination of relative left-right asymmetry factors by brain region. RESULTS: Data from fourteen subjects were suitable for inclusion in the analysis. Eight subjects had MRI-visible pathologies that were associated with decreases in NAA/Creatine, which extended beyond the volume indicated by the MRI. Five subjects demonstrated no significant metabolic alterations using any of the analysis methods, and one subject had no findings on MRI or MRSI. CONCLUSIONS: This proof of principle study supports previous evidence that alterations of MR-detected brain metabolites can be detected in tissue areas affected by neocortical seizure activity, while additionally demonstrating advantages of the volumetric MRSI approach
    corecore