6 research outputs found

    Threatened North African seagrass meadows have supported green turtle populations for millennia

    Get PDF
    "Protect and restore ecosystems and biodiversity" is the second official aim of the current UN Ocean Decade (2021 to 2030) calling for the identification and protection of critical marine habitats. However, data to inform policy are often lacking altogether or confined to recent times, preventing the establishment of long-term baselines. The unique insights gained from combining bioarchaeology (palaeoproteomics, stable isotope analysis) with contemporary data (from satellite tracking) identified habitats which sea turtles have been using in the Eastern Mediterranean over five millennia. Specifically, our analysis of archaeological green turtle (Chelonia mydas) bones revealed that they likely foraged on the same North African seagrass meadows as their modern-day counterparts. Here, millennia-long foraging habitat fidelity has been directly demonstrated, highlighting the significance (and long-term dividends) of protecting these critical coastal habitats that are especially vulnerable to global warming. We highlight the potential for historical ecology to inform policy in safeguarding critical marine habitats

    ArcHives—combined palynological, genomic and lipid analysis of medieval wax seals

    No full text
    Abstract Beeswax is a product of honeybees (Apis mellifera) and has been used extensively through time, especially as the primary component in medieval sealing wax for authenticating millions of documents. Today, these seals form large collections which, along with the historical information in the documents that the seals are attached to, could be a potential biomolecular archive for honeybees. Here, we investigate the possibility of obtaining biological information from medieval wax seals by performing a palynological and shotgun metagenomic analysis on eight medieval wax seal fragments. Our palynological results show that some pollen and fungal spores remain in the seals, albeit very little. Only one out of eight samples yielded enough DNA for sequencing. Moreover, only minor parts of the DNA reads could be taxonomically identified and were identified as plant and fungal DNA. These results demonstrate some potential for using wax seals as biological archives, but most importantly provides a framework for future studies, in addition to understanding further the degradation of seals as cultural heritage objects. We emphasize that future analyses should focus on other methodologies to retrieve data for historical context or alternatively improve molecular methods and screen sample collections broadly
    corecore