22 research outputs found

    Super-resolution fight club: assessment of 2D and 3D single-molecule localization microscopy software

    Get PDF
    With the widespread uptake of two-dimensional (2D) and three-dimensional (3D) single-molecule localization microscopy (SMLM), a large set of different data analysis packages have been developed to generate super-resolution images. In a large community effort, we designed a competition to extensively characterize and rank the performance of 2D and 3D SMLM software packages. We generated realistic simulated datasets for popular imaging modalities—2D, astigmatic 3D, biplane 3D and double-helix 3D—and evaluated 36 participant packages against these data. This provides the first broad assessment of 3D SMLM software and provides a holistic view of how the latest 2D and 3D SMLM packages perform in realistic conditions. This resource allows researchers to identify optimal analytical software for their experiments, allows 3D SMLM software developers to benchmark new software against the current state of the art, and provides insight into the current limits of the field

    RAB-5 Controls the Cortical Organization and Dynamics of PAR Proteins to Maintain C. elegans Early Embryonic Polarity

    Get PDF
    In all organisms, cell polarity is fundamental for most aspects of cell physiology. In many species and cell types, it is controlled by the evolutionarily conserved PAR-3, PAR-6 and aPKC proteins, which are asymmetrically localized at the cell cortex where they define specific domains. While PAR proteins define the antero-posterior axis of the early C. elegans embryo, the mechanism controlling their asymmetric localization is not fully understood. Here we studied the role of endocytic regulators in embryonic polarization and asymmetric division. We found that depleting the early endosome regulator RAB-5 results in polarity-related phenotypes in the early embryo. Using Total Internal Reflection Fluorescence (TIRF) microscopy, we observed that PAR-6 is localized at the cell cortex in highly dynamic puncta and depleting RAB-5 decreased PAR-6 cortical dynamics during the polarity maintenance phase. Depletion of RAB-5 also increased PAR-6 association with clathrin heavy chain (CHC-1) and this increase depended on the presence of the GTPase dynamin, an upstream regulator of endocytosis. Interestingly, further analysis indicated that loss of RAB-5 leads to a disorganization of the actin cytoskeleton and that this occurs independently of dynamin activity. Our results indicate that RAB-5 promotes C. elegans embryonic polarity in both dynamin-dependent and -independent manners, by controlling PAR-6 localization and cortical dynamics through the regulation of its association with the cell cortex and the organization of the actin cytoskeleton

    Automatic endosomal structure detection and localization in fluorescence microscopic images

    No full text
    This paper proposes a modified spatially-constrained similarity measure (mSCSM) method for endosomal structure detection and localization under the bag-of-words (BoW) framework. To our best knowledge, the proposed mSCSM is the first method for fully automatic detection and localization of complex subcellular compartments like endosomes. Essentially, a new similarity score and a novel two-stage output control scheme are proposed for localization by extracting discriminative information within a group of query images. Compared with the original SCSM which is formulated for instance localization, the proposed mSCSM can address category based localization problems. The preliminary experimental results show the proposed mSCSM can correctly detect and localize 79.17% of the existing endosomal structures in the microscopic images of human myeloid endothelial cells.</p

    Phagocytosis of antibody-opsonized tumor cells leads to the formation of a discrete vacuolar compartment in macrophages

    No full text
    Despite the rapidly expanding use of antibody-based therapeutics to treat cancer, knowledge of the cellular processes following phagocytosis of antibody-opsonized tumor cells is limited. Here we report the formation of a phagosome-associated vacuole that is observed in macrophages as these degradative compartments mature following phagocytosis of HER2-positive cancer cells in the presence of the HER2-specific antibody, trastuzumab. We demonstrate that this vacuole is a distinct organelle that is closely apposed to the phagosome. Furthermore, the size of the phagosome-associated vacuole is increased by inhibition of the mTOR pathway. Collectively, the identification of this vacuolar compartment has implications for understanding the subcellular trafficking processes leading to the destruction of phagocytosed, antibody-opsonized cancer cells by macrophages.</p

    Intensity-based axial localization approaches for multifocal plane microscopy

    No full text
    Multifocal plane microscopy (MUM) can be used to visualize biological samples in three dimensions over large axial depths and provides for the high axial localization accuracy that is needed in applications such as the three-dimensional tracking of single particles and super-resolution microscopy. This report analyzes the performance of intensity-based axial localization approaches as applied to MUM data using Fisher information calculations. In addition, a new non-parametric intensity-based axial location estimation method, Multi- Intensity Lookup Algorithm (MILA), is introduced that, unlike typical intensity-based methods that make use of a single intensity value per data image, utilizes multiple intensity values per data image in determining the axial location of a point source. MILA is shown to be robust against potential bias induced by differences in the sub-pixel location of the imaged point source. The method's effectiveness on experimental data is also evaluated.</p

    Macrophage-mediated trogocytosis leads to death of antibody-opsonized tumor cells

    No full text
    Understanding the complex behavior of effector cells such as monocytes or macrophages in regulating cancerous growth is of central importance for cancer immunotherapy. Earlier studies using CD20-specific antibodies have demonstrated that the Fcg receptor (FcgR)-mediated transfer of the targeted receptors from tumor cells to these effector cells through trogocytosis can enable escape from antibody therapy, leading to the viewpoint that this process is protumorigenic. In the current study, we demonstrate that persistent trogocytic attack results in the killing of HER2-overexpressing breast cancer cells. Further, antibody engineering to increase FcgR interactions enhances this tumoricidal activity. These studies extend the complex repertoire of activities of macrophages to trogocytic-mediated cell death of HER2-overexpressing target cells and have implications for the development of effective antibody-based therapies.</p

    Remote focusing multifocal plane microscopy for the imaging of 3D single molecule dynamics with cellular context

    No full text
    Three-dimensional (3D) single molecule fluorescence microscopy affords the ability to investigate subcellular trafficking at the level of individual molecules. An imaged single molecule trajectory, however, often reveals only limited information about the underlying biological process when insufficient information is available about the organelles and other cellular structures with which the molecule interacts. A new 3D fluorescence microscopy imaging modality is described here that enables the simultaneous imaging of the trajectories of fast-moving molecules and the associated cellular context. The new modality is called remote focusing multifocal plane microscopy (rMUM), as it extends multifocal plane microscopy (MUM) with a remote focusing module. MUM is a modality that uses multiple detectors to image distinct focal planes within the specimen at the same time, and it has been demonstrated to allow the determination of 3D single molecule trajectories with high accuracy. Remote focusing is a method that makes use of two additional objective lenses to enable the acquisition of a z-stack of the specimen without having to move the microscope's objective lens or sample stage, components which are required by MUM to be fixed in place. rMUM's remote focusing module thus allows the cellular context to be imaged in the form of z-stacks as the trajectories of molecules or other objects of interest are imaged by MUM. In addition to a description of the modality, a discussion of rMUM data analysis and an example of data acquired using an rMUM setup are provided in this paper.</p

    A two-stage method for automated detection of ring-like endosomes in fluorescent microscopy images

    No full text
    Endosomes are subcellular organelles which serve as important transport compartments in eukaryotic cells. Fluorescence microscopy is a widely applied technology to study endosomes at the subcellular level. In general, a microscopy image can contain a large number of organelles and endosomes in particular. Detecting and annotating endosomes in fluorescence microscopy images is a critical part in the study of subcellular trafficking processes. Such annotation is usually performed by human inspection, which is time-consuming and prone to inaccuracy if carried out by inexperienced analysts. This paper proposes a two-stage method for automated detection of ring-like endosomes. The method consists of a localization stage cascaded by an identification stage. Given a test microscopy image, the localization stage generates a voting-map by locally comparing the query endosome patches and the test image based on a bag-of-words model. Using the voting-map, a number of candidate patches of endosomes are determined. Subsequently, in the identification stage, a support vector machine (SVM) is trained using the endosome patches and the background pattern patches. Each of the candidate patches is classified by the SVM to rule out those patches of endosome-like background patterns. The performance of the proposed method is evaluated with real microscopy images of human myeloid endothelial cells. It is shown that the proposed method significantly outperforms several state-of-the-art competing methods using multiple performance metrics.Published versio

    Neonatal Fc receptor expression in macrophages is indispensable for IgG homeostasis

    No full text
    The maintenance of the homeostasis of immunoglobulin G (IgG) represents a fundamental aspect of humoral immunity that has direct relevance to the successful delivery of antibody-based therapeutics. The ubiquitously expressed neonatal Fc receptor (FcRn) salvages IgG from cellular degradation following pinocytic uptake into cells, conferring prolonged in vivo persistence on IgG. However, the cellular sites of FcRn function are poorly defined. Pinocytic uptake is a prerequisite for FcRn-mediated IgG salvage, prompting us to investigate the consequences of IgG uptake and catabolism by macrophages, which represent both abundant and highly pinocytic cells in the body. Site-specific deletion of FcRn to generate mice harboring FcRn-deficient macrophages results in IgG hypercatabolism and ~threefold reductions in serum IgG levels, whereas these effects were not observed in mice that lack functional FcRn in B cells and dendritic cells. Consistent with the degradative activity of FcRn-deficient macrophages, depletion of these cells in FcRn-deficient mice leads to increased persistence and serum levels of IgG. These studies demonstrate a pivotal role for FcRn-mediated salvage in compensating for the high pinocytic and degradative activities of macrophages to maintain IgG homeostasis
    corecore