86 research outputs found

    The structure and properties of horse muscle acylphosphatase in solution Mobility of antigenic and active site regions

    Get PDF
    AbstractThe solution structure of acylphosphatase determined by proton nuclear magnetic resonance spectroscopy is described. The results allow us to discuss the fold of the protein (101 amino acids), to correlate the exposure and the mobility of the backbone with the antigenicity, and to locate the active site

    In vivo inactivation of phosphotyrosine protein phosphatases by nitric oxide.

    Get PDF
    AbstractThe effect of NO on phosphotyrosine protein phosphatases (PTPases) has been investigated in vivo. NO production is induced in interferon-γ and lipopolyaccharide stimulated RAW-264.7 macrophages as indicated by the increase of NO2− in the medium. Our results demonstrate an inhibition of p-nitrophenylphosphatase activity as a consequence of macrophages activation. Under the described experimental conditions, most of the hydrolysis of p-nitrophenylphosphate can be ascribed to the action of cellular PTPases. The presence of NG-monomethyl-l-arginine, a specific inhibitor of NO synthase decreases the inactivation rate of both membrane-bound and soluble PTPases. This evidence further confirms the ability of NO to inactivate PTPases and suggests a possible role of NO in the regulation of cellular processes involving this class of phosphatases

    Tyrosine-phosphorylated caveolin is a physiological substrate of the low M(r) protein-tyrosine Phosphatase

    Get PDF
    Low M(r) phosphotyrosine-protein phosphatase is involved in the regulation of several tyrosine kinase growth factor receptors. The best characterized action of this enzyme is on the signaling pathways activated by platelet-derived growth factor, where it plays multiple roles. In this study we identify tyrosine-phosphorylated caveolin as a new potential substrate for low M(r) phosphotyrosine-protein phosphatase. Caveolin is tyrosine-phosphorylated in vivo by Src kinases, recruits into caveolae, and hence regulates the activities of several proteins involved in cellular signaling cascades. Our results demonstrate that caveolin and low M(r) phosphotyrosine-protein phosphatase coimmunoprecipitate from cell lysates, and that a fraction of the enzyme localizes in caveolae. Furthermore, in a cell line sensitive to insulin, the overexpression of the C12S dominant negative mutant of low M(r) phosphotyrosine-protein phosphatase (a form lacking activity but able to bind substrates) causes the enhancement of tyrosine-phosphorylated caveolin. Insulin stimulation of these cells induces a strong increase of caveolin phosphorylation. The localization of low M(r) phosphotyrosine-protein phosphatase in caveolae, the in vivo interaction between this enzyme and caveolin, and the capacity of this enzyme to rapidly dephosphorylate phosphocaveolin, all indicate that tyrosine-phosphorylated caveolin is a relevant substrate for this phosphatase

    Modifications induced by acylphosphatase in the functional properties of heart sarcolemma Na+,K+ pump

    Get PDF
    AbstractAcylphosphatase purified from cardiac muscle actively hydrolyzes the phosphoenzyme intermediate of heart sarcolemma Na+,K+-ATPase. This effect occurred with acylphosphatase amounts (up to 800 unitsmg membrane protein) that fall within the physiological range and the low value of the apparent Km (0.69 × 10−7 M) indicates a considerable affinity of the enzyme towards this specific substrate. Acylphosphatase addition to purified sarcolemmal vesicles significantly increased the rate of Na+,K+-dependent ATP hydrolysis. Maximal stimulation, observed with 800 unitsmg protein, resulted in an ATPase activity which was about 2-fold over basal value. The same acylphosphatase amounts significantly stimulated, in a similar and to an even greater extent, the rate of ATP driven Na+ transport into sarcolemmal vesicles. These findings lead to suppose that an accelerated hydrolysis of the phosphoenzyme may result in an enhanced activity of heart sarcolemmal Na+,K+ pump, therefore suggesting a potential role of acylphosphatase in the control of this active transport system

    pp60v-src phosphorylates and activates low molecular weight phosphotyrosine-protein phosphatase.

    Get PDF
    Low M(r) phosphotyrosine-protein phosphatase belongs to the non-receptor cytosolic phosphotyrosine-protein phosphatase subfamily. It has been demonstrated that this enzyme dephosphorylates receptor tyrosine kinases, namely the epidermal growth factor receptor in vitro and the platelet-derived growth factor receptor in vivo. Low M(r) phosphotyrosine-protein phosphatase is constitutively tyrosine-phosphorylated in NIH/3T3 cells transformed by pp60v-src. The same tyrosine kinase, previously immunoprecipitated, phosphorylates this enzyme in vitro as well. Phosphorylation is enhanced using phosphatase inhibitors and phenylarsine oxide-inactivated phosphatase, consistently with the existence of an auto-dephosphorylation process. Intermolecular dephosphorylation is demonstrated adding the active enzyme in a solution containing the inactivated and previously phosphorylated one. This tyrosine phosphorylation correlates with an increase in catalytic activity. Our results provide evidence of a physiological mechanism of low M(r) phosphotyrosine-protein phosphatase activity regulation

    Effects of acylphosphatase on the activity of erythrocyte memmbrane Ca2+ pump.

    Get PDF
    Acylphosphatase, purified from human erythrocytes, actively hydrolyzes the acylphosphorylated intermediate of human red blood cell membrane Ca(2+)-ATPase. This effect occurred with acylphosphatase amounts (up to 10 units/mg membrane protein) that fall within the physiological range. Furthermore, a very low Km value, 3.41 +/- 1.16 (S.E.) nM, suggests a high affinity in acylphosphatase for the phosphoenzyme intermediate, which is consistent with the small number of Ca(2+)-ATPase units in human erythrocyte membrane. Acylphosphatase addition to red cell membranes resulted in a significant increase in the rate of ATP hydrolysis. Maximal stimulation (about 2-fold over basal) was obtained at 2 units/mg membrane protein, with a concomitant decrease in apparent Km values for both Ca2+ and ATP. Conversely, similar amounts of acylphosphatase significantly decreased (by about 30%) the rate of Ca2+ transport into inside-out red cell membrane vesicles, albeit that reduced apparent Km values for Ca2+ and ATP were also observed in this case. A stoichiometry of 2.04 Ca2+/ATP hydrolyzed was calculated in the absence of acylphosphatase; in the presence of acylphosphatase optimal concentration, this ratio was reduced to 0.9. Acylphosphatase activity, rather than just protein, was essential for all the above effects. Taken together these findings suggest that, because of its hydrolytic activity on the phosphoenzyme intermediate, acylphosphatase reduces the efficiency of the erythrocyte membrane Ca2+ pump. A possible mechanism for this effect is that the phosphoenzyme is hydrolyzed before its transport work can be accomplished

    Redox Regulation of β-Actin during Integrin-mediated Cell Adhesion

    Get PDF
    Redox sensitivity of actin toward an exogenous oxidative stress has recently been reported. We report here the first evidence of in vivo actin redox regulation by a physiological source of reactive oxygen species, specifically those species generated by integrin receptors during cell adhesion. Actin oxidation takes place via the formation of a mixed disulfide between cysteine 374 and glutathione; this modification is essential for spreading and for cytoskeleton organization. Impairment of actin glutathionylation, either through GSH depletion or expression of the C374A redox-insensitive mutant, greatly affects cell spreading and the formation of stress fibers, leading to inhibition of the disassembly of the actinomyosin complex. These data suggest that actin glutathionylation is essential for cell spreading and cytoskeleton organization and that it plays a key role in disassembly of actinomyosin complex during cell adhesion
    • …
    corecore