205 research outputs found

    Phyllosilicate Transitions in Ferromagnesian Soils: Short-Range Order Materials and Smectites Dominate Secondary Phases

    Get PDF
    Analyses of X-ray diffraction (XRD) patterns taken by the CheMin instrument on the Curiosity Rover in Gale crater have documented the presence of clay minerals interpreted as smectites and a suite of amorphous to short-range order materials termed X-ray amorphous materials. These X-ray amorphous materials are commonly ironrich and aluminum poor and likely some of them are weathering products rather than primary glasses due to the presence of volatiles. Outstanding questions remain regarding the chemical composition and mineral structure of these X-ray amorphous materials and the smectites present at Gale crater and what they indicate about environmental conditions during their formation. To gain a better understanding of the mineral transitions that occur within ferromagnesian parent materials, we have investigated the development of secondary clay minerals and shortrange order materials in two soil chronosequences with varying climates developing on ultramafic bedrock. Field Sites: We investigated soil weathering within two field locations, the Klamath Mountains of Northern California, and the Tablelands of Newfoundland, Canada. Both sites possess age dated or correlated recently deglaciated soils and undated but substantially older soils. In the Klamath mountains the Trinity Ultramafic Body was deglaciated roughly 15,000 years bp while in the Tablelands a moraine was dated to about 17,600 years bp. The Klamath Mountains feature a seasonally wet and dry climate while the Tablelands are wet year-round with saturated soil conditions observed during sampling and standing water observed within 3 of 4 soil pit sampling locations

    Sulfate Formation From Acid-Weathered Phylosilicates: Implications for the Aqueous History of Mars

    Get PDF
    Most phyllosilicates on Mars are thought to have formed during the planet's earliest Noachian era, then Mars underwent a global change making the planet's surface more acidic [e.g. 1]. Prevailing acidic conditions may have affected the already existing phyllosilicates, resulting in the formation of sulfates. Both sulfates and phyllosilicates have been identified on Mars in a variety of geologic settings [2] but only in a handful of sites are these minerals found in close spatial proximity to each other, including Mawrth Vallis [3,4] and Gale Crater [5]. While sulfate formation from the acidic weathering of basalts is well documented in the literature [6,7], few experimental studies investigate sulfate formation from acid-weathered phyllosilicates [8-10]. The purpose of this study is to characterize the al-teration products of acid-weathered phyllosilicates in laboratory experiments. We focus on three commonly identified phyllosilicates on Mars: nontronite (Fe-smectite), saponite (Mg-smectite), and montmorillonite (Al-smectite) [1, and references therein]. This information will help constrain the formation processes of sulfates observed in close association with phyllosilicates on Mars and provide a better understanding of the aqueous history of such regions as well as the planet as a whole

    Interpreting Aqueous Alteration in the Murray Formation Using Reactive Transport Modeling

    Get PDF
    Abundant evidence for liquid water exists at Gale crater, Mars. However, the characteristics of past water remain an area of active research. The first exposures of the Murray formation in Gale crater, Mars (Fig. 1) were studied with four samples analyzed using CheMin: Buckskin, Telegraph Peak, Mojave, and Confidence Hills. Analyses indicate differences in mineralogy and chemistry between the samples which have been attributed to changes in pH and oxidation state of depositional and diagenetic environments. Recent work also suggests that hydrothermal fluids may have been present based on the presence of Se, Zn, Pb, and other elements

    X-Ray Diffraction on Mars: Scientific Discoveries Made by the CheMin Instrument

    Get PDF
    The Mars Science Laboratory Curiosity landed in Gale crater in August 2012 with the goal to identify and characterize habitable environments on Mars. Curiosity has been studying a series of sedimentary rocks primarily deposited in fluviolacustrine environments approximately 3.5 Ga. Minerals in the rocks and soils on Mars can help place further constraints on these ancient aqueous environments, including pH, salinity, and relative duration of liquid water. The Chemistry and Mineralogy (CheMin) X-ray diffraction and X-ray fluorescence instrument on Curiosity uses a Co X-ray source and charge-coupled device detector in transmission geometry to collect 2D Debye-Scherrer ring patterns of the less than 150 micron size fraction of drilled rock powders or scooped sediments. With an angular range of approximately 2.52deg 20 and a 20 resolution of approximately 0.3deg, mineral abundances can be quantified with a detection limit of approximately 1-2 wt. %. CheMin has returned quantitative mineral abundances from 16 mudstone, sandstone, and aeolian sand samples so far. The mineralogy of these samples is incredibly diverse, suggesting a variety of depositional and diagenetic environments and different source regions for the sediments. Results from CheMin have been essential for reconstructing the geologic history of Gale crater and addressing the question of habitability on ancient Mars

    X-Ray Amorphous Phases in Antarctica Dry Valley Soils: Insight into Aqueous Alteration Processes on Mars?

    Get PDF
    The Chemistry and Mineralogy (CheMin) instrument onboard the Mars Curiosity rover has detected abundant amounts (approx. 25-30 weight percentage) of X-ray amorphous materials in a windblown deposit (Rocknest) and in a sedimentary mudstone (Cumberland and John Klein) in Gale crater, Mars. On Earth, X-ray amorphous components are common in soils and sediments, but usually not as abundant as detected in Gale crater. One hypothesis for the abundant X-ray amorphous materials on Mars is limited interaction of liquid water with surface materials, kinetically inhibiting maturation to more crystalline phases. The objective of this study was to characterize the chemistry and mineralogy of soils formed in the Antarctica Dry Valleys, one of the driest locations on Earth. Two soils were characterized from different elevations, including a low elevation, coastal, subxerous soil in Taylor Valley and a high elevation, ultraxerous soil in University Valley. A variety of techniques were used to characterize materials from each soil horizon, including Rietveld analysis of X-ray diffraction data. For Taylor Valley soil, the X-ray amorphous component ranged from about 4 weight percentage in the upper horizon to as high as 15 weight percentage in the lowest horizon just above the permafrost layer. Transmission electron microscopy indicated that the presence of short-range ordered (SRO) smectite was the most likely candidate for the X-ray amorphous materials in the Taylor Valley soils. The SRO smectite is likely an aqueous alteration product of mica inherited from granitic materials during glaciation of Taylor Valley. The drier University Valley soils had lower X-ray amorphous contents of about 5 weight percentage in the lowest horizon. The X-ray amorphous materials in University Valley are attributed to nanoparticles of TiO2 and possibly amorphous SiO2. The high abundance of X-ray amorphous materials in Taylor Valley is surprising for one of the driest places on Earth. These materials may have been physically and chemical altered during soil formation, however, the limited interaction with water and low temperatures may result in the formation of "immature" X-ray amorphous or SRO materials. Perhaps, a similar process contributes to the formation of the high content of X-ray amorphous materials detected on Mars

    Sulfate Mineral Formation from Acid-Weathered Phyllosilicates: Implications for the Aqueous History of Mars

    Get PDF
    Phyllosilicates on Mars are thought to have formed under neutral to alkaline conditions during Mars' earliest Noachian geologic era (approx. 4.1-3.7 Gya). Sulfate formation, on the other hand, requires more acidic conditions which are thought to have occurred later during Mars' Hesperian era (approx. 3.7-3.0 Gya). Therefore, regions on Mars where phyllosilicates and sulfates are found in close proximity to each other provide evidence for the geologic and aqueous conditions during this global transition. Both phyllosilicates and sulfates form in the presence of water and thus give clues to the aqueous history of Mars and its potential for habitability. Phyllosilicates that formed during the Noachian era may have been weathered by the prevailing acidic conditions that characterize the Hesperian. Therefore, the purpose of this study is to characterize the alteration products resulting from acid-sulfate weathered phyllosilicates in laboratory experiments. This study focuses on two phyllosilicates commonly identified with sulfates on Mars: nontronite and saponite. We also compare our results to observations of phyllosilicates and sulfates on Mars to better understand the formation process of sulfates in close proximity to phyllosilicates on Mars and constrain the aqueous conditions of these regions on Mars

    Insights Into the Aqueous History of Mars from Acid-Sulfate Weathered Phyllosilicates

    Get PDF
    Phyllosilicates on Mars are thought to have formed during Mars' earliest Noachian geologic era (approx. 4.1-3.7 Ga). Sulfate formation, on the other hand, requires more acidic conditions which are thought to have occurred later during Mars' Hesperian era (approx. 3.7-3.0 Ga). Therefore, regions on Mars where phyllosilicates and sulfates are found in close proximity to each other provide evidence for the aqueous conditions during this global transition. Both phyllosilicates and sulfates form in the presence of water and thus give clues to the aqueous history of Mars and its potential for habitability. Phyllosilicates that formed during the Noachian era would have been weathered by the prevailing acidic conditions that define the Hesperian. Therefore, the purpose of this study is to characterize the alteration products of acid-sulfate weathered phyllosilicates in laboratory experiments, focusing on the Fe/Mg-smectites commonly identified on Mars. We also compare our results to observations of phyllosilicates and sulfates on Mars in regions such as Endeavour Crater and Mawrth Vallis to understand the formation process of sulfates and constrain the aqueous history of these regions

    Reaction of Akaganeite with Mars-Relevant Anions

    Get PDF
    Akaganeite has been identified by the Chemistry and Mineralogy (CheMin) and Sample Analysis at Mars (SAM) instruments onboard the Curiosity rover in Yellowknife Bay, Gale Crater, Mars. Akaganeite was also detected by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument on the Mars Reconnaissance Orbiter (MRO) in Robert Sharp Crater and Antoniadi basin. Akaganeite is an iron(III) hydroxide with a hollandite-like tunnel structure with tunnels usually occupied by Cl-. Chloride in tunnels is not immobile and can be replaced by other anions in solution. Identification of tunnel composition with Mars-like instruments can help to characterize composition of ancient aqueous environments where akaganeite is present on Mars

    Thermal Infrared Emission Spectroscopy of Synthetic Allophane and its Potential Formation on Mars

    Get PDF
    Allophane is a poorly-crystalline, hydrous aluminosilicate with variable Si/Al ratios approx.0.5-1 and a metastable precursor of clay minerals. On Earth, it forms rapidly by aqueous alteration of volcanic glass under neutral to slightly acidic conditions [1]. Based on in situ chemical measurements and the identification of alteration phases [2-4], the Martian surface is interpreted to have been chemically weathered on local to regional scales. Chemical models of altered surfaces detected by the Mars Exploration Rover Spirit in Gusev crater suggest the presence of an allophane-like alteration product [3]. Thermal infrared (TIR) spectroscopy and spectral deconvolution models are primary tools for determining the mineralogy of the Martian surface [5]. Spectral models of data from the Thermal Emission Spectrometer (TES) indicate a global compositional dichotomy, where high latitudes tend to be enriched in a high-silica material [6,7], interpreted as high-silica, K-rich volcanic glass [6,8]. However, later interpretations proposed that the high-silica material may be an alteration product (such as amorphous silica, clay minerals, or allophane) and that high latitude surfaces are chemically weathered [9-11]. A TIR spectral library of pure minerals is available for the public [12], but it does not contain allophane spectra. The identification of allophane on the Martian surface would indicate high water activity at the time of its formation and would help constrain the aqueous alteration environment [13,14]. The addition of allophane to the spectral library is necessary to address the global compositional dichotomy. In this study, we characterize a synthetic allophane by IR spectroscopy, X-ray diffraction (XRD), and transmission electron microscopy (TEM) to create an IR emission spectrum of pure allophane for the Mars science community to use in Martian spectral models

    Detection of Allophane on Mars Through Orbital and In-Situ Thermal-Infrared Spectroscopy

    Get PDF
    We have collected laboratory thermal IR spectra of the mineraloid allophane and aluminosilicate gels. Using those spectra to model regional TES spectra, we suggest that several areas of Mars contain significant amounts of allophane-like weathering products. The presence of allophane on Mars indicates that 1) significant Al sources, such as feldspar or glass, were weathered; 2) weathering on Mars produced poorly-crystalline aluminosilicates, rather than easily identifiable crystalline minerals; and 3) some Martian weathering proceeded under moderate pH environments, suggesting acid weathering is not the only major alteration mechanism on Mars
    • …
    corecore