28 research outputs found

    Unraveling the Aqueous Alteration History and Searching for Extinct Life in Gale Crater, Mars: Mineralogical and Geochemical Results from the Mars Science Laboratory, Curiosity Rover's Instrument Payload

    Get PDF
    The goal of the Mars Science Laboratory (MSL), Curiosity Rover mission is to determine if Gale Crater, Mars ever had a habitable environment and to search for evidence of extinct microbial life. Gale Crater is ~155 km wide with a layered central mound (~5 km high). The Curiosity rover has traversed ~20 km from the crater floor up 350 m to the lower slopes of the central mound for over 2200 Martian solar days (sols). Curiosity's instruments have evaluated the geochemistry and mineralogy of regolith fines, eolian sediments, and sedimentary rocks to assess Gale Crater's aqueous alteration history. Results indicate that Gale Crater surface material have experienced a complex authigenetic/diagenetic history involving fluids with varying pH, redox, and salt composition. The inferred geochemical conditions were favorable for microbial habitability and if life ever existed, there was likely sufficient organic C to support a small microbial population

    Curiosity's Investigation of the Bagnold Dunes, Gale Crater: Overview of a Two-Phase Scientific Campaign

    Get PDF
    The Mars Science Laboratory (MSL) Curiosity rover landed at Gale crater in August 2012 with the goal of unravelling the climate and habitability history of ancient Mars. On its way to higher stratigraphic levels of Aeolis Mons, the crater's central mound, Curiosity crossed an active dune field informally named the Bagnold Dune Field. Curiosity's traverse through the Bagnold Dunes between December 2015 and April 2017 constituted the first in situ investigation of an active dune field on another planet. The scientific campaign at the dunes enabled a detailed study of martian eolian processes at scales that are unachievable from orbiter-based imagery, from the scale of compound bedforms down to those of individual sand grains. The eolian-science campaign was broadly divided into two main phases - a first-phase investigation near two barchan dunes along the northern trailing edge of the dune field, Namib and High Dunes, and a second-phase investigation farther south near a linear dune, the Nathan Bridges Dune, named after our beloved colleague and friend Nathan Bridges. In addition to these two phases, the Bagnold Dunes campaign included punctual investigations of isolated ripples and ripple fields further along the rover traverse away from the Bagnold Dune Field. The main goals of the scientific investigation at the Bagnold Dunes were two-fold: (I) developing a mechanistic understanding of martian eolian processes and rates from direct in situ observations of eolian structures and their dynamics, and (II) characterizing the physical properties and the chemical and mineral composition of eolian sands and dust on Mars. Significant advances in martian eolian science resulted from Curiosity's ground investigation of the active Bagnold Dunes. Altogether, results from the Bagnold Dunes campaign are key to understanding how the martian environment affects eolian processes, and will thus prove most useful to deciphering paleoenvironments from the martian eolian sedimentary record

    Source Characteristics, Chemical Weathering, and Lithification of the Stimson Sandstone and Lessons for the Martian Sedimentary Record

    Get PDF
    The Stimson formation is a basaltic eolian sandstone perched unconformably above the Mount Sharp group rocks in Gale crater, and it is exposed in a number of plateaus observed by the Mars Science Laboratory Curiosity rover. Despite being one of the least geochemically and mineralogically diverse units observed by the Curiosity rover, the Stimson formation is uniquely positioned to offer significant information about sand weathering and lithification processes on Mars because of two factors: (1) the Stimson formation is the only lithologic formation on Mars for which we have a modern analog, the basaltic eolian Bagnold dunes, and (2) Curiosity obtained 33 chemistry analyses of 18 unique targets with the Alpha-Particle X-ray Spectrometer and 2 mineralogical samples of unaltered Stimson sandstone (discounting samples of Stimson altered by late-stage fluid events). Comparison between the Stimson sandstone and the Bagnold sands yields clues to source rock and lithification processes on Mars, and differences between different Stimson samples reveal weathering trends affecting the ancient dune field

    Weathering in the Forelands of Two Rapidly Retreating Alpine Glaciers of Volcanic Bedrock in the Three Sisters, Oregon, USA

    Get PDF
    The glaciers of the Three Sisters volcanoes in Cascadia have retreated dramatically over the past century. In order to understand ongoing chemical weathering and solute transport in the proglacial valleys, waters were sampled from glacier outwash streams, local snowmelt, and proglacial springs and lakes at Collier and Diller Glaciers. To understand weathering and transport processes in the proglacial plains, infrared orbital remote sensing data was used to map compositional variability and highlight weathering products, which were then ground-truthed with laboratory mineralogical and chemical analyses of sediments. The hydrochemistry is significantly affected by a sub- and proglacial mafic weathering system lacking carbonate minerals. Here we report major ion concentrations in meltwaters for the summer 2016 and 2017 melt seasons. Total cation concentrations range from 3 to 250 eq/l and dissolved bicarbonate concentrations range from 2 to 200 eq/l. Other dissolved anions are negligible compared to bicarbonate. Dissolved silica concentrations range from 2 to 260 mol/l, comparable to total dissolved cation concentrations. The highest cation and silica concentrations were measured in moraine-sourced springs. Compositional remote sensing analysis identified alteration zones in the proglacial plains at both Collier and Diller indicating potential hydrated silica. This analysis is consistent with laboratory analysis of sediment samples, which indicate the presence of poorly crystalline phases weathering products, including hydrated silica. Weathered materials are preferentially deposited on moraines due to aeolian and glacial transport, as well as intra-moraine alteration, and at abandoned stream terraces due to fluvial transport. Geochemical measurements indicate that the predominant form of chemical weathering in these periglacial mafic systems is the carbonation of feldspar as well as reactive volcanic glass. The presence of poorly crystalline silicates, as indicated by remote sensing datasets and laboratory analysis, is consistent with rapid weathering of feldspars and glass and formation of Fe-Al-Si-bearing mineraloids in these proglacial valleys. This weathering regime has wide-ranging implications for atmospheric CO2 drawdown due to cold-climate volcanic rock weathering

    Nanophase Carbonates on Mars: Implications for Carbonate Formation and Habitability

    Get PDF
    Despite having an atmosphere composed primarily of CO2 and evidence for abundant water in the past, carbonate minerals have only been discovered in small amounts in martian dust [1], in outcrops of very limited extent [2, 3], in soils in the Northern Plains (the landing site of the 2007 Phoenix Mars Scout Mission) [4] and may have recently been detected in aeolian material and drilled and powdered sedimentary rock in Gale Crater (the Mars Science Laboratory [MSL] landing site) [5]. Thermal analysis of martian soils by instruments on Phoenix and MSL has demonstrated a release of CO2 at temperatures as low as 250-300 degC, much lower than the traditional decomposition temperatures of calcium or magnesium carbonates. Thermal decomposition temperature can depend on a number of factors such as instrument pressure and ramp rate, and sample particle size [6]. However, if the CO2 released at low temperatures is from carbonates, small particle size is the only effect that could have such a large impact on decomposition temperature, implying the presence of extremely fine-grained (i.e., "nanophase" or clay-sized) carbonates. We hypothesize that this lower temperature release is the signature of small particle-sized (clay-sized) carbonates formed by the weathering of primary minerals in dust or soils through interactions with atmospheric water and carbon dioxide and that this process may persist under current martian conditions. Preliminary work has shown that clay-sized carbonate grains can decompose at much lower temperatures than previously thought. The first work took carbonate, decomposed it to CaO, then flowed CO2 over these samples held at temperatures >100 degC to reform carbonates. Thermal analysis confirmed that carbonates were indeed formed and transmission electron microsopy was used to determine crystal sized were on the order of 10 nm. The next step used minerals such as diopside and wollastonite that were sealed in a glass tube with a CO2 and H2O source. After reacting these materials for a number of hours, thermal analysis demonstrated the formations of carbonates that decomposed at temperatures as low as 500 degC [7]. Further work is underway to carry out the weathering process under more Mars-like conditions (low pressure and low temperature) to determine if the carbonate decomposition temperature can be shifted to even lower temperatures, consistent with what has been detected by thermal analysis instruments on Mars

    Aqueous Processes and Microbial Habitability of Gale Crater Sediments from the Blunts Point to the Glenn Torridon Clay Unit

    Get PDF
    A driving factor for sending the Mars Science Laboratory, Curiosity rover to Gale Crater was the orbital detection of clay minerals in the Glen Torridon (GT) clay unit. Clay mineral detections in GT suggested a past aqueous environment that was habitable, and could contain organic evidence of past microbiology. The mission of the Sample Analysis at Mars (SAM) instrument onboard Curiosity was to detect organic evidence of past microbiology and to detect volatile bearing mineralogy that can inform on whether past geochemical conditions would have supported microbiological activity. The objective of this work was to 1) evaluate the depositional/alteration conditions of Blunts Point (BP) to GT sediments 2) search for evidence of organics, and 3) evaluate microbial habitability in the BP, Vera Rubin Ridge (VRR), and GT sedimentary rock

    Silicic volcanism on Mars evidenced by tridymite in high-SiO2 sedimentary rock at Gale crater

    Get PDF
    Tridymite, a SiO2 mineral that crystallizes at low pressures and high temperatures (>870 °C) from high-SiO2 materials, was detected at high concentrations in a sedimentary mudstone in Gale crater, Mars. Mineralogy and abundance were determined by X-ray diffraction using the Chemistry and Mineralogy instrument on the Mars Science Laboratory rover Curiosity. Terrestrial tridymite is commonly associated with silicic volcanism where high temperatures and high-silica magmas prevail, so this occurrence is the first in situ mineralogical evidence for martian silicic volcanism. Multistep processes, including high-temperature alteration of silica-rich residues of acid sulfate leaching, are alternate formation pathways for martian tridymite but are less likely. The unexpected discovery of tridymite is further evidence of the complexity of igneous petrogenesis on Mars, with igneous evolution to high-SiO2 compositions

    Low Hesperian P_(CO2) constrained from in situ mineralogical analysis at Gale Crater, Mars

    Get PDF
    Carbon dioxide is an essential atmospheric component in martian climate models that attempt to reconcile a faint young sun with planetwide evidence of liquid water in the Noachian and Early Hesperian. In this study, we use mineral and contextual sedimentary environmental data measured by the Mars Science Laboratory (MSL) Rover Curiosity to estimate the atmospheric partial pressure of CO_2 (P_(CO2)) coinciding with a long-lived lake system in Gale Crater at ∼3.5 Ga. A reaction–transport model that simulates mineralogy observed within the Sheepbed member at Yellowknife Bay (YKB), by coupling mineral equilibria with carbonate precipitation kinetics and rates of sedimentation, indicates atmospheric P_(CO2) levels in the 10s mbar range. At such low P_(CO2) levels, existing climate models are unable to warm Hesperian Mars anywhere near the freezing point of water, and other gases are required to raise atmospheric pressure to prevent lake waters from being lost to the atmosphere. Thus, either lacustrine features of Gale formed in a cold environment by a mechanism yet to be determined, or the climate models still lack an essential component that would serve to elevate surface temperatures, at least locally, on Hesperian Mars. Our results also impose restrictions on the potential role of atmospheric CO_2 in inferred warmer conditions and valley network formation of the late Noachian
    corecore