222 research outputs found

    Automated Identification and Differentiation of Spectrally Similar Hydrothermal Minerals on Mars

    Get PDF
    Early telescopic observations corroborated hydration related absorptions on Mars in the infrared. Images from the Viking missions led to speculation of hydrothermal alteration and were followed by two missions which mapped the spatial variability of the ~ 3 m hydration feature. Since then, the Compact Reconnaissance Imager for Mars (CRISM) has provided high spatial resolution (up to 18m) spectral identification of a suite of hydrothermal and diagenetic minerals which have illuminated a range of formation mechanisms. Presence/absence and spatial segregation or mixing of minerals like prehnite, epidote, chlorite amphiboles, and mixed-layer Fe/Mg smectite-chlorite provide valuable evidence for the geologic setting of deposits on Earth, and these phases are often used as temperature and aqueous chemistry indicators in terrestrial systems. Mapping the distribution of these phases will help to answer whether Mars had widespread conditions favorable for low-grade metamorphism and diagenesis, or only focused hydrothermal systems in areas of high heat flow. Further characterizing the chemistry and structure of these phases will then help to answer how most of the widespread Fe/Mg phyllosilicates formed, further defining early geochemical cycling and climate. A fully automated approach for accurate mapping of important hydrothermal mineral phases on Mars has been a challenge. Due to overlapping features in the M-OH region (~2.2-2.4 m), the strongest absorption features of chlorite, prehnite, and epidote in the short-wave infrared are difficult to distinguish from one another and from the most commonly occurring hydrated silicates on Mars, Fe/Mg smectites. Weaker absorptions are present in both prehnite and epidote which help to distinguish them from chlorite and smectites, but their relative strength in the presence of noise and spatial mixing is often too low to confidently identify them without the noise suppression and feature enhancement methods described here. The spectral signatures of mixed-layer Fe/Mg smectite-chlorite and partially chloritized Fe/Mg smectites have not yet been adequately assessed. Here we evaluate the effectiveness of two empirical and statistical methods for identifying and differentiating these phases using CRISM data

    Clay Mineralogy and Crystallinity as a Climatic Indicator: Evidence for Both Cold and Temperate Conditions on Early Mars

    Get PDF
    Surface weathering on Earth is driven by precipitation (rain/snow melt). Here we summarize the influence of climate on minerals produced during surface weathering, based on terrestrial literature and our new laboratory analyses of weathering products from glacial analog sites. By comparison to minerals identified in likely surface environments on Mars, we evaluate the implications for early martian climate

    Freeze-Thaw Cycling as a Chemical Weathering Agent on a Cold and Icy Mars

    Get PDF
    Liquid water was abundant on early Mars, but whether the climate was warm and wet or cold and icy with punctuated periods of melting is still poorly understood. Modern climate models for Mars tend to predict a colder, icier early climate than previously imagined. In addition, ice and glaciation have been major geologic agents throughout the later Hesperian and Amazonian eras. One process that can act in such climates is repeated freezing and thawing of water on the surface and in the subsurface, and is significant because it can occur anywhere with an active layer and could have persisted for a time after liquid water was no longer stable on Mars surface. As freeze-thaw is the dominant mechanical weathering process in most glacial/periglacial terrains, it was likely a significant geomorphologic driver at local to regional scales during past climates, and would potentially have been most active when day-average surface temperatures exceeded 0 C for part of the year. Indeed, freeze-thaw involving liquid water in the Amazonian is evidenced by abundant geomorphic features including polygonal ground and solifluction lobes requiring seasonal thawing. In addition to physical modification, freezing can drive solutions towards supersaturation and force dissolved solutes out as precipitates. In Mars-like terrains, dissolved solutes are typically dominated by silica. In polar regions on Earth, freeze-thaw cycles have been shown to promote deposition of silica, and freeze-thaw experiments on synthetic solutions found stable amorphous silica that built up over multiple cycles. Freeze-thaw may therefore be an important but overlooked chemical weathering process on Mars. However, our ability to assess its impact on alteration of martian terrains is majorly limited by the current lack of understanding of the alteration phases produced (and formation rates) under controlled freeze-thaw weathering of Mars-relevant materials. To address this knowledge gap, we report results from (1) freeze-thaw weathering products found at a glacial Mars analog site at the Three Sisters, Oregon, and (2) new controlled freeze-thaw experiments on basaltic material

    Phyllosilicate Transitions in Ferromagnesian Soils: Short-Range Order Materials and Smectites Dominate Secondary Phases

    Get PDF
    Analyses of X-ray diffraction (XRD) patterns taken by the CheMin instrument on the Curiosity Rover in Gale crater have documented the presence of clay minerals interpreted as smectites and a suite of amorphous to short-range order materials termed X-ray amorphous materials. These X-ray amorphous materials are commonly ironrich and aluminum poor and likely some of them are weathering products rather than primary glasses due to the presence of volatiles. Outstanding questions remain regarding the chemical composition and mineral structure of these X-ray amorphous materials and the smectites present at Gale crater and what they indicate about environmental conditions during their formation. To gain a better understanding of the mineral transitions that occur within ferromagnesian parent materials, we have investigated the development of secondary clay minerals and shortrange order materials in two soil chronosequences with varying climates developing on ultramafic bedrock. Field Sites: We investigated soil weathering within two field locations, the Klamath Mountains of Northern California, and the Tablelands of Newfoundland, Canada. Both sites possess age dated or correlated recently deglaciated soils and undated but substantially older soils. In the Klamath mountains the Trinity Ultramafic Body was deglaciated roughly 15,000 years bp while in the Tablelands a moraine was dated to about 17,600 years bp. The Klamath Mountains feature a seasonally wet and dry climate while the Tablelands are wet year-round with saturated soil conditions observed during sampling and standing water observed within 3 of 4 soil pit sampling locations

    Mineralogy of an ancient lacustrine mudstone succession from the Murray formation, Gale crater, Mars

    Get PDF
    The Mars Science Laboratory Curiosity rover has been traversing strata at the base of Aeolis Mons (informally known as Mount Sharp) since September 2014. The Murray formation makes up the lowest exposed strata of the Mount Sharp group and is composed primarily of finely laminated lacustrine mudstone intercalated with rare crossbedded sandstone that is prodeltaic or fluvial in origin. We report on the first three drilled samples from the Murray formation, measured in the Pahrump Hills section. Rietveld refinements and FULLPAT full pattern fitting analyses of X-ray diffraction patterns measured by the MSL CheMin instrument provide mineral abundances, refined unit-cell parameters for major phases giving crystal chemistry, and abundances of X-ray amorphous materials. Our results from the samples measured at the Pahrump Hills and previously published results on the Buckskin sample measured from the Marias Pass section stratigraphically above Pahrump Hills show stratigraphic variations in the mineralogy; phyllosilicates, hematite, jarosite, and pyroxene are most abundant at the base of the Pahrump Hills, and crystalline and amorphous silica and magnetite become prevalent higher in the succession. Some trace element abundances measured by APXS also show stratigraphic trends; Zn and Ni are highly enriched with respect to average Mars crust at the base of the Pahrump Hills (by 7.7 and 3.7 times, respectively), and gradually decrease in abundance in stratigraphically higher regions near Marias Pass, where they are depleted with respect to average Mars crust (by more than an order of magnitude in some targets). The Mn stratigraphic trend is analogous to Zn and Ni, however, Mn abundances are close to those of average Mars crust at the base of Pahrump Hills, rather than being enriched, and Mn becomes increasingly depleted moving upsection. Minerals at the base of the Pahrump Hills, in particular jarosite and hematite, as well as enrichments in Zn, Ni, and Mn, are products of acid-sulfate alteration on Earth. We hypothesize that multiple influxes of mildly to moderately acidic pore fluids resulted in diagenesis of the Murray formation and the observed mineralogical and geochemical variations. The preservation of some minerals that are highly susceptible to dissolution at low pH (e.g., mafic minerals and fluorapatite) suggests that acidic events were not long-lived and that fluids may not have been extremely acidic (pH>2pH>2). Alternatively, the observed mineralogical variations within the succession may be explained by deposition in lake waters with variable Eh and/or pH, where the lowermost sediments were deposited in an oxidizing, perhaps acidic lake setting, and sediments deposited in the upper Pahrump Hills and Marias Pass were deposited lake waters with lower Eh and higher pH

    Sulfate Formation From Acid-Weathered Phylosilicates: Implications for the Aqueous History of Mars

    Get PDF
    Most phyllosilicates on Mars are thought to have formed during the planet's earliest Noachian era, then Mars underwent a global change making the planet's surface more acidic [e.g. 1]. Prevailing acidic conditions may have affected the already existing phyllosilicates, resulting in the formation of sulfates. Both sulfates and phyllosilicates have been identified on Mars in a variety of geologic settings [2] but only in a handful of sites are these minerals found in close spatial proximity to each other, including Mawrth Vallis [3,4] and Gale Crater [5]. While sulfate formation from the acidic weathering of basalts is well documented in the literature [6,7], few experimental studies investigate sulfate formation from acid-weathered phyllosilicates [8-10]. The purpose of this study is to characterize the al-teration products of acid-weathered phyllosilicates in laboratory experiments. We focus on three commonly identified phyllosilicates on Mars: nontronite (Fe-smectite), saponite (Mg-smectite), and montmorillonite (Al-smectite) [1, and references therein]. This information will help constrain the formation processes of sulfates observed in close association with phyllosilicates on Mars and provide a better understanding of the aqueous history of such regions as well as the planet as a whole

    Interpreting Aqueous Alteration in the Murray Formation Using Reactive Transport Modeling

    Get PDF
    Abundant evidence for liquid water exists at Gale crater, Mars. However, the characteristics of past water remain an area of active research. The first exposures of the Murray formation in Gale crater, Mars (Fig. 1) were studied with four samples analyzed using CheMin: Buckskin, Telegraph Peak, Mojave, and Confidence Hills. Analyses indicate differences in mineralogy and chemistry between the samples which have been attributed to changes in pH and oxidation state of depositional and diagenetic environments. Recent work also suggests that hydrothermal fluids may have been present based on the presence of Se, Zn, Pb, and other elements

    Using Mineralchemistry in Gale Crater Sedimentary Rocks to Constrain Ancient Igneous Processes on Mars

    Get PDF
    Over the last decade, various datasets have shown evidence for unexpected Noachian felsic materials at the surface of Mars. The Martian meteorite NWA 7034, also well-known as Black Beauty, has been identified as a regolith breccia containing mafic clasts along with remarkable felsic igneous clasts dated at 4.43 Gyr and classified as monzonitic [1-2]. In addition, the Curiosity rover has been analyzing felsic materials within Gale crater since its landing in 2012 [3-4]. The X-ray diffractometer (XRD) in the CheMin instrument and the laser induced breakdown spectrometer (LIBS) ChemCam onboard Curiosity identified plagioclase and K-spar along with augite and pigeonite [3-5]. In sedimentary rocks, those minerals are detrital, coming from a magmatic source of Noachian age that was sufficiently evolved to form K-spar [1,6]. Several igneous materials analyzed by Chem- Cam have been classified as part of the alkaline trend including Harrison, a trachy-andesite [7]
    • …
    corecore