8 research outputs found

    Binding dynamics of a monomeric SSB protein to DNA : a single-molecule multi-process approach

    Get PDF
    People Programme of the European Union’s Seventh Framework Programme [REA 334496 to B.E.B.]; Leonardo da Vinci European Union Programme (to M.F.G.); Wellcome Trust [099149/Z/12/Z, 091825/Z/10/Z]. Funding for open access charge: Wellcome Trust; University of St Andrews.Single-stranded DNA binding proteins (SSBs) are ubiquitous across all organisms and are characterized by the presence of an OB (oligonucleotide/oligosaccharide/oligopeptide) binding motif to recognize single-stranded DNA (ssDNA). Despite their critical role in genome maintenance, our knowledge about SSB function is limited to proteins containing multiple OB-domains and little is known about single OB-folds interacting with ssDNA. Sulfolobus solfataricus SSB (SsoSSB) contains a single OB-fold and being the simplest representative of the SSB-family may serve as a model to understand fundamental aspects of SSB:DNA interactions. Here, we introduce a novel approach based on the competition between Förster resonance energy transfer (FRET), protein-induced fluorescence enhancement (PIFE) and quenching to dissect SsoSSB binding dynamics at single monomer resolution. We demonstrate that SsoSSB follows a monomer-by-monomer binding mechanism that involves a positive-cooperativity component between adjacent monomers. We found that SsoSSB dynamic behaviour is closer to that of Replication Protein A than to Escherichia coli SSB; a feature that might be inherited from the structural analogies of their DNA-binding domains. We hypothesize that SsoSSB has developed a balance between highdensity binding and a highly dynamic interaction with ssDNA to ensure efficient protection of the genome but still allow access to ssDNA during vital cellular processes.Publisher PDFPeer reviewe

    Management and outcomes of patients with left atrial appendage thrombus prior to percutaneous closure.

    Get PDF
    Left atrial appendage (LAA) thrombus has heretofore been considered a contraindication to percutaneous LAA closure (LAAC). Data regarding its management are very limited. The aim of this study was to analyse the medical and invasive treatment of patients referred for LAAC in the presence of LAA thrombus. This multicentre observational registry included 126 consecutive patients referred for LAAC with LAA thrombus on preprocedural imaging. Treatment strategies included intensification of antithrombotic therapy (IAT) or direct LAAC. The primary and secondary endpoints were a composite of bleeding, stroke and death at 18 months, and procedural success, respectively. IAT was the preferred strategy in 57.9% of patients, with total thrombus resolution observed in 60.3% and 75.3% after initial and subsequent IAT, respectively. Bleeding complications and stroke during IAT occurred in 9.6% and 2.9%, respectively, compared with 3.8% bleeding and no embolic events in the direct LAAC group before the procedure. Procedural success was 90.5% (96.2% vs 86.3% in direct LAAC and IAT group, respectively, p=0.072), without cases of in-hospital thromboembolic complications. The primary endpoint occurred in 29.3% and device-related thrombosis was found in 12.8%, without significant difference according to treatment strategy. Bleeding complications at 18 months occurred in 22.5% vs 10.5% in the IAT and direct LAAC group, respectively (p=0.102). In the presence of LAA thrombus, IAT was the initial management strategy in half of our cohort, with initial thrombus resolution in 60% of these, but with a relatively high bleeding rate (~10%). Direct LAAC was feasible, with high procedural success and absence of periprocedural embolic complications. However, a high rate of device-related thrombosis was detected during follow-up

    The transient catalytically competent coenzyme allocation into the active site of Anabaena ferredoxin NADP(+)-reductase

    No full text
    Ferredoxin-NADP(+) reductase (FNR) catalyses the electron transfer from ferredoxin to NADP(+) via its flavin FAD cofactor. A molecular dynamics theoretical approach is applied here to visualise the transient catalytically competent interaction of Anabaena FNR with its coenzyme, NADP(+). The particular role of some of the residues identified as key in binding and accommodating the 2'P-AMP moiety of the coenzyme is confirmed in molecular terms. Simulations also indicate that the architecture of the active site precisely contributes to the orientation of the N5 of the FAD isoalloxazine ring and the C4 of the coenzyme nicotinamide ring in the conformation of the catalytically competent hydride transfer complex and, therefore, contributes to the efficiency of the process. In particular, the side chain of the C-terminal Y303 in Anabaena FNR appears key to providing the optimum geometry by reducing the stacking probability between the isoalloxazine and nicotinamide rings, thus providing the required co-linearity and distance among the N5 of the flavin cofactor, the C4 of the coenzyme nicotinamide and the hydride that has to be transferred between them. All these factors are highly related to the reaction efficiency, mechanism and reversibility of the process.</p

    Role of specific residues in coenzyme binding, charge-transfer complex formation, and catalysis in Anabaena ferredoxin NADP(+)-reductase

    Get PDF
    AbstractTwo transient charge–transfer complexes (CTC) form prior and upon hydride transfer (HT) in the reversible reaction of the FAD-dependent ferredoxin-NADP+ reductase (FNR) with NADP+/H, FNRox-NADPH (CTC-1), and FNRrd-NADP+ (CTC-2). Spectral properties of both CTCs, as well as the corresponding interconversion HT rates, are here reported for several Anabaena FNR site-directed mutants. The need for an adequate initial interaction between the 2′P-AMP portion of NADP+/H and FNR that provides subsequent conformational changes leading to CTC formation is further confirmed. Stronger interactions between the isoalloxazine and nicotinamide rings might relate with faster HT processes, but exceptions are found upon distortion of the active centre. Thus, within the analyzed FNR variants, there is no strict correlation between the stability of the transient CTCs formation and the rate of the subsequent HT. Kinetic isotope effects suggest that, while in the WT, vibrational enhanced modulation of the active site contributes to the tunnel probability of HT; complexes of some of the active site mutants with the coenzyme hardly allow the relative movement of isoalloxazine and nicotinamide rings along the HT reaction. The architecture of the WT FNR active site precisely contributes to reduce the stacking probability between the isoalloxazine and nicotinamide rings in the catalytically competent complex, modulating the angle and distance between the N5 of the FAD isoalloxazine and the C4 of the coenzyme nicotinamide to values that ensure efficient HT processes

    Mechanism of the Hydride Transfer between Anabaena Tyr303Ser FNRrd/FNRox and NADP(+)/H. A Combined Pre-Steady-State Kinetic/Ensemble-Averaged Transition-State Theory with Multidimensional Tunneling Study

    No full text
    The flavoenzyme ferredoxin-NADP(+) reductase (FNR) catalyzes the production of NADPH during photosynthesis. The hydride-transfer reactions between the Anabaena mutant Tyr303Ser FNRrd/FNRox and NADP(+)/H have been Studied both experimentally and theoretically. Stopped-flow pre-steady-state kinetic measurements have shown that, in contrast to that observed for WT FNR, the physiological hydride transfer from Tyr303Ser FNRrd to NADP(+) does not Occur. Conversely, the reverse reaction does take place with a rate constant just slightly slower than for WT FNR. This latter process shows temperature-dependent rates, but essentially temperature independent kinetic isotope effects, Suggesting the reaction takes place following the vibration-driven tunneling model. In turn, ensemble-averaged variational transition-state theory with multidimensional tunneling calculations provide reaction rate Constant Values and kinetic isotope effects that agree with the experimental results, the experimental and the theoretical values for the reverse process being noticeably similar. The reaction mechanism behind these hydride transfers has been analyzed. The formation of a close contact ionic pair FADH(-):NADP(+) surrounded by the polar environment of the enzyme in the reactant complex of the mutant might be the cause of the huge difference between the direct and the reverse reaction.</p

    Catalytic mechanism of hydride transfer between NADP(+)/H and ferredoxin-NADP(+) reductase from Anabaena PCC 7119

    No full text
    The mechanism of hydride transfer between Anabaena FNR and NADP(+)/H was analysed using for the first time stopped-flow photodiode array detection and global analysis deconvolution. The results indicated that the initial spectral changes, occurring within the instrumental dead time upon reaction of FNR with NADP(+)/H, included not only the initial interaction and complex formation, but also the first subsequent steps of the sequential reactions that involve hydride transfer. Two different charge-transfer complexes formed prior and upon hydride transfer, FNRox-NADPH and FNRrd-NADP(+). Detectable amounts of FNROox-NADPH were found at equilibrium, but FNRrd-NADP(+) accumulated to a small extent and quickly evolved. The spectral properties of both charge-transfer complexes, for the first time in Anabaena FNR, as well as the corresponding inter-conversion hydride transfer rates were obtained. The need of an adequate initial interaction between NADP(+)/H and FNR, and subsequent conformational changes, was also established by studying the reactions of two FNR mutants. (c) 2006 Elsevier Inc. All rights reserved.</p

    Tuning of the FMN binding and oxido-reduction properties by neighboring side chains in Anabaena flavodoxin

    No full text
    Contribution of three regions (phosphate-binding, 50's and 90's loops) of Anabaena apoflavodoxin to FMN binding and reduction potential was studied. Thr12 and Glu16 did not influence FMN redox properties, but Thr12 played a role in FMN binding. Replacement of Trp57 with Glu, Lys or Arg moderately shifted E-ox/sq, and E-sq/hq and altered the energetic of the FMN redox states binding profile. Our data indicate that the side chain of position 57 does not modulate E-ox/sq by aromatic stacking or solvent exclusion, but rather by influencing the relative strength of the H-bond between the N(5) of the flavin and the Asn58-Ile59 bond. A correlation was observed between the isoalloxazine increase in solvent accessibility and less negative E-sq/hq. Moreover, E-sq/hq became less negative as positively charged residues were added near to the isoalloxazine. Ile59 and Ile92 were simultaneously mutated to Ala or Glu. These mutations impaired FMN binding, while shifting E-sq/hq, to less negative values and E-ox/sq to more negative. These effects are discussed on the bases of the X-ray structures of some of the Fld mutants, suggesting that in Anabaena Fld the structural control of both electron transfer steps is much more subtle than in other Flds. (C) 2007 Elsevier Inc. All rights reserved.</p

    Exact Analysis of Heterotropic Interactions in Proteins: Characterization of Cooperative Ligand Binding by Isothermal Titration Calorimetry

    Get PDF
    Intramolecular interaction networks in proteins are responsible for heterotropic ligand binding cooperativity, a biologically important, widespread phenomenon in nature (e.g., signaling transduction cascades, enzymatic cofactors, enzymatic allosteric activators or inhibitors, gene transcription, or repression). The cooperative binding of two (or more) different ligands to a macromolecule is the underlying principle. To date, heterotropic effects have been studied mainly kinetically in enzymatic systems. Until now, approximate approaches have been employed for studying equilibrium heterotropic ligand binding effects, except in two special cases in which an exact analysis was developed: independent binding (no cooperativity) and competitive binding (maximal negative cooperativity). The exact analysis and methodology for characterizing ligand binding cooperativity interactions in the general case (any degree of cooperativity) using isothermal titration calorimetry are presented in this work. Intramolecular interaction pathways within the allosteric macromolecule can be identified and characterized using this methodology. As an example, the thermodynamic characterization of the binding interaction between ferredoxin-NADP(+) reductase and its three substrates, NADP(+), ferredoxin, and flavodoxin, as well as the characterization of their binding cooperativity interaction, is presented
    corecore