169 research outputs found

    Convivencia escolar y solución de conflictos mediadas por la tecnología de la información y comunicación

    Get PDF
    Colombia is a country that is preparing for peace, however, in educational institutions are high rates of conflict, which is why it is imperative to use educational strategies that promote a healthy coexistence. The aim of the article is to present pedagogical strategies to strengthen school coexistence and conflict resolution, through the use of information and communication technologies. The study is of qualitative type under the action research model. There were violent demonstrations and erratic behavior by students in the interaction with their peer group, where verbal, physical aggressions, discrimination, foul language, breaking of school rules and disrespect to the authority are shown, which is represented by teachers. and the administrative body of the institution, where through TIC spaces of participation were created that allowed generating a better school coexistence based on the solution of conflicts.Colombia es un país que se está preparando para la paz, sin embargo, en las instituciones educativas se encuentran altos índices de conflictos, por lo cual es imperante emplear estrategias educativas que fomenten una sana convivencia. El articulo tiene como objetivo presentar estrategias pedagógicas para fortalecer la convivencia escolar y solución de conflictos, mediante el uso de tecnologías de la información y la comunicación. El estudio es de tipo cualitativo bajo el modelo de investigación acción. Se evidenciaron manifestaciones violentas y comportamientos erráticos por parte de los estudiantes en la interacción con su grupo de pares, donde se demuestran agresiones verbales, físicas, discriminación, lenguaje soez, ruptura de normas escolares e irrespeto a la autoridad, la cual es representada por docentes y cuerpo administrativo de la institución, donde a través de las TIC se crearon espacios de participación que permitieron generar una mejor convivencia escolar basada en la solución de conflicto

    Optimal tuning of the control parameters of an inverter-based microgrid using the methodology of design of experiments

    Get PDF
    This paper is a postprint of a paper submitted to and accepted for publication in IET Power Electronics and is subject to Institution of Engineering and Technology Copyright. The copy of record is available at the IET Digital Library.The design of the control system in an inverter-based microgrid is a challenging problem due to the large number of parameters involved. Different optimisation methods based on obtaining an approximated mathematical model of the microgrid can be found in the literature. In these approaches, the non-linearities and uncertainties of the real system are typically not considered, which may result in a non-optimal tuning of the control parameters. In addition, in most applications, the problem has been simplified assuming that all controllers have the same value for their control parameters. However, in this case, the behaviour of the system is sub-optimal since the particularities of each node of the microgrid are not taken into account. In this paper, an experimental approach for tuning the control parameters of an inverter-based microgrid is introduced. The approach is based on the methodology of design of experiments and it considers different values for the control parameters of all controllers. In this study, this methodology is applied to the design of a droop-free control scheme; however, it can be easily extended to other control schemes. The validity of the proposal is verified through selected experimental results.This work was supported by the Ministry of Science, Innovation and Universities of Spain and by the European Regional Development Fund under project RTI2018- 100732- B-C22.Peer ReviewedPostprint (author's final draft

    Adaptive slope voltage control for distributed generation inverters with improved transient performance

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Reactive power injection in distributed generation inverters is an useful ancillary service for grid supporting purposes. For grid-feeding converters, the slope control method is the most common voltage regulation strategy used in local (communication-less) applications. Despite its simplicity, this method offers limited dynamic properties in scenarios with changing operation conditions. In this sense, this paper presents an adaptive slope voltage control which provides an improved transient performance against operating variations. To derive the control configuration, a control-oriented mathematical model is developed. The accuracy of the modeling and the performance of the proposed control are validated by selected experimental results.Peer ReviewedPostprint (author's final draft

    A flexible experimental laboratory for distributed generation networks based on power inverters

    Get PDF
    In the recently deregulated electricity market, distributed generation based on renewable sources is becoming more and more relevant. In this area, two main distributed scenarios are focusing the attention of recent research: grid-connected mode, where the generation sources are connected to a grid mainly supplied by big power plants, and islanded mode, where the distributed sources, energy storage devices, and loads compose an autonomous entity that in its general form can be named a microgrid. To conduct a successful research in these two scenarios, it is essential to have a flexible experimental setup. This work deals with the description of a real laboratory setup composed of four nodes that can emulate both scenarios of a distributed generation network. A comprehensive description of the hardware and software setup will be done, focusing especially in the dual-core DSP used for control purposes, which is next to the industry standards and able to emulate real complexities. A complete experimental section will show the main features of the system.Peer ReviewedPostprint (published version

    Finite control set model predictive control for a three-phase shunt active power filter with a kalman filter-based estimation

    Get PDF
    In this paper, the finite control set model predictive control is combined with the vector operation technique to be applied in the control of a three-phase active power filter. Typically, in the finite control set technique applied to three-phase power converters, eight different vectors are considered in order to obtain the optimum control signal by minimizing a cost function. On the other hand, the vector operation technique is based on dividing the grid voltage period into six different regions. The main advantage of combining both techniques is that for each region the number of possible voltage vectors to be considered can be reduced to a half, thus reducing the computational load employed by the control algorithm. Besides, in each region, only two phase-legs are switching at high frequency while the remaining phase-leg is maintained to a constant dc-voltage value during this interval. Accordingly, a reduction of the switching losses is obtained. Unlike the typical model predictive control methods which make use of the discrete differential equations of the converter, this method considers a Kalman filter in order to improve the behavior of the closed-loop system in noisy environments. Selected experimental results are exposed in order the demonstrate the validity of the control proposalPostprint (published version

    Receding-horizon model predictive control for a three-phase VSI with an LCL filter

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper presents a Continuous Control Set Model Predictive Control with receding horizon for a threephase voltage source inverter with LCL filter, using a reduced model of the converter. The main advantages of using this reduced model is that an active damping can be achieved while the computational burden is reduced. Besides, in order to eliminate the model uncertainties, and also to achieve a zero steady state error, the proposed converter model includes an embedded integrator. Regarding the control scheme, a Kalman filter is used in order to estimate the three-phase currents without oscillation. The objective is to find the control signals vector that minimizes the error between the current and its reference. It is important to remark that the control signals obtained fromthe cost function can be used directly in a space vector modulator, without the use of additional controllers such as proportionalintegral or proportional-resonant. Compared with the Finite Control Set Model Predictive Control, the proposedmethod operates at fixed switching frequency without using any restriction in the cost function. Simulation and experimental results show that this proposalworks correctly even in case of grid harmonics and voltage sags.Peer ReviewedPostprint (author's final draft

    Positive and Negative Sequence Control Strategies to Maximize the Voltage Support in Resistive-Inductive Grids During Grid Faults

    Get PDF
    Grid faults are one of the most severe perturbations in power systems. During these extreme disturbances, the reliability of the grid is compromised and the risk of a power outage is increased. To prevent this issue, distributed generation inverters can help the grid by supporting the grid voltages. Voltage support mainly depends on two constraints: the amount of injected current and the grid impedance. This paper proposes a voltage support control scheme that joins these two features. Hence, the control strategy injects the maximum rated current of the inverter. Thus, the inverter takes advantage of the distributed capacities and operates safely during voltage sags. Also, the controller selects the appropriate power references depending on the resistive-inductive grid impedance. Therefore the grid can be better supported since the voltage at the point of common coupling is improved. Several voltage objectives, which cannot be achieved together, are developed and discussed in detail. These objectives are threefold: a) to maximize the positive sequence voltage, b) to minimize the negative sequence voltage, and c) to maximize the difference between positive and negative sequence voltages. A mathematical optimal solution is obtained for each objective function. Experimental results are presented to validate the theoretical solutions.Postprint (author's final draft

    Voltage support experimental analysis of a low-voltage ride-through strategy applied to grid-connected distributed inverters

    Get PDF
    In recent decades, different control strategies have been designed for the increasing integration of distributed generation systems. These systems, most of them based on renewable energies, use electronic converters to exchange power with the grid. Capabilities such as low-voltage ride-through and reactive current injection have been experimentally explored and reported in many research papers with a single inverter; however, these capabilities have not been examined in depth in a scenario with multiple inverters connected to the grid. Only few simulation works that include certain methods of reactive power control to solve overvoltage issues in low voltage grids can be found in the literature. Therefore, the overall objective of the work presented in this paper is to provide an experimental analysis of a low-voltage ride-through strategy applied to distributed power generation systems to help support the grid during voltage sags. The amount of reactive power will depend on the capability of each inverter and the amount of generated active power. The obtained experimental results demonstrate that, depending on the configuration of distributed generation, diverse inverters could have different control strategies. In the same way, the discussion of these results shows that the present object of study is of great interest for future research.Peer ReviewedPostprint (published version
    corecore